Abstract
In this paper, we combine moving-object database and social network systems and present a novel data model called Geo-Social-Moving (GSM) that enables the unified management of trajectories, underlying geographical space and social relationships for massive moving objects. A bulk of data types and corresponding operators are also proposed to facilitate geo-social queries on moving objects.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
We’re sorry, something doesn't seem to be working properly.
Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.
References
Angles, R., Gutierrez, C.: Survey of graph database models. ACM Comput. Surv. (CSUR) 40(1), 1–10 (2008)
Bogorny, V., Renso, C., Aquino, A.R., Lucca Siqueira, F., Alvares, L.O.: CONSTAnT-a conceptual data model for semantic trajectories of moving objects. Trans. GIS 18(1), 66–88 (2014)
Crandall, D.J., Backstrom, L., Cosley, D., Suri, S., Huttenlocher, D., Kleinberg, J.: Inferring social ties from geographic coincidences. Proc. Natl. Acad. Sci. 107(52), 22436–22441 (2010)
Egenhofer, M.J., Franzosa, R.D.: Point-set topological spatial relations. Int. J. Geogr. Inf. Syst. 5, 161–174 (1991)
Forlizzi, L., Gting, R.H., Nardelli, E., Schneider, M.: A data model and data structures for moving objects databases. ACM SIGMOD 29(2), 319–330 (2000)
Guting, R.H., Bhlen, M.H., Erwig, M., Jensen, C.S., Lorentzos, N.A., Schneider, M., Vazirgiannis, M.: A foundation for representing and querying moving objects. ACM Trans. Database Syst. (TODS) 25, 1–42 (2000)
Guting, R.H., Ding, Z.: Modeling and querying moving objects in networks. VLDB J. 15(2), 165–190 (2006)
Jensen, C.S., Lu, H., Yang, B.: Indoor - a new data management frontier. IEEE Data Eng. Bull 33, 12–17 (2010)
Kolahdouzan, M., Shahabi, C.: Voronoi-based k nearest neighbor search for spatial network databases. In: Proceedings of the Thirtieth International Conference on Very Large Data Bases, VLDB Endowment, vol. 30, pp. 840–851 (2004)
Long, J.A., Nelson, T.A.: A review of quantitative methods for movement data. Int. J. Geogr. Inf. Sci. 27, 292–318 (2013)
Mokbel, M.F., Sarwat, M.: Mobility and social networking: a data management perspective. Proc. VLDB Endow. 6, 1196–1197 (2013)
Parent, C., Spaccapietra, S., Renso, C., Andrienko, G., Bogorny, V., Damiani, M.L., Macedo, J., Pelekis, N., Theoderidis, Y., Yan, Z.: Semantic trajectories modeling and analysis. ACM Comput. Surv. 45(4), 39–76 (2013)
Pelekis, N., Theodoridis, Y., Janssens, D.: On the management and analysis of our lifesteps. ACM SIGKDD Explor. Newsl. 15, 23–32 (2014)
Sandu Popa, I.: Modeling. University of Versailles-Saint-Quentin, Querying and Indexing Moving Objects with Sensors on Road Networks (2010)
Scellato, S., Noulas, A., Mascolo, C.: Exploiting place features in link prediction on location-based social networks. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1046–1054 (2011)
Schneider, M.: Moving Objects in Databases and GIS: State-of-the-Art and Open Problems. In: Navratil, G. (ed.) Research Trends in Geographic Information Science, pp. 169–187. Springer, Heidelberg (2009)
Sistla, A.P., Wolfson, O., Chamberlain, S., Dao, S.: Modeling and querying moving objects. In: International Conference on Data Engineering (ICDE), pp. 422–422 (1997)
Spaccapietra, S., Parent, C.: Adding meaning to your steps (keynote paper). In: Jeusfeld, M., Delcambre, L., Ling, T.-W. (eds.) ER 2011. LNCS, vol. 6998, pp. 13–31. Springer, Heidelberg (2011)
Tang, W., Zhuang, H., Tang, J.: Learning to infer social ties in large networks. In: Gunopulos, D., Hofmann, T., Malerba, D., Vazirgiannis, M. (eds.) ECML PKDD 2011, Part III. LNCS, vol. 6913, pp. 381–397. Springer, Heidelberg (2011)
Wolfson, O., Chamberlain, S., Kalpakis, K., Yesha, Y.: Modeling moving objects for location based services. In: König-Ries, B., Makki, K., Makki, S.A.M., Pissinou, N., Scheuermann, P. (eds.) IMWS 2001. LNCS, vol. 2538, pp. 46–58. Springer, Heidelberg (2002)
Acknowledgments
This research was supported by the National Natural Science Foundation of China (Grant No. 41401460, 41271408) and the Key Research Program of the Chinese Academy of Sciences (Grant No. ZDRW-ZS-2016-6-3). And we also thank the anonymous referees for their helpful comments and suggestions.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Zhang, H., Lu, F., Chen, J. (2016). A Geo-Social Data Model for Moving Objects. In: Tan, Y., Shi, Y. (eds) Data Mining and Big Data. DMBD 2016. Lecture Notes in Computer Science(), vol 9714. Springer, Cham. https://doi.org/10.1007/978-3-319-40973-3_11
Download citation
DOI: https://doi.org/10.1007/978-3-319-40973-3_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-40972-6
Online ISBN: 978-3-319-40973-3
eBook Packages: Computer ScienceComputer Science (R0)