Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Automated Multimodal Computer Aided Detection Based on a 3D-2D Image Registration

  • Conference paper
  • First Online:
Breast Imaging (IWDM 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9699))

Included in the following conference series:

Abstract

Computer aided detection (CADe) of breast cancer is mainly focused on monomodal applications. We propose an automated multimodal CADe approach, which uses patient-specific image registration of MRI and X-ray mammography to estimate the spatial correspondence of tissue structures. Then, based on the spatial correspondence, features are extracted from both MRI and X-ray mammography. As proof of principle, distinct regions of interest (ROI) were classified into normal and suspect tissue. We investigated the performance of different classifiers, compare our combined approach against a classification with MRI features only and evaluate the influence of the registration error. Using the multimodal information, the sensitivity for detecting suspect ROIs improved by 7 % compared to MRI-only detection. The registration error influences the results: using only datasets with a registration error below \(10\,mm\), the sensitivity for the multimodal detection increases by 10 % to a maximum of 88 %, while the specificity remains constant. We conclude that automatically combining MRI and X-ray can enhance the result of a CADe system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cheng, H., Shi, X., Min, R., Hu, L., Cai, X., Du, H.: Approaches for automated detection and classification of masses in mammograms. Pattern Recogn. 39(4), 646–668 (2006)

    Article  Google Scholar 

  2. Dorrius, M., der Weide, M.V., van Ooijen, P., Pijnappel, R., Oudkerk, M.: Computer-aided detection in breast MRI: a systematic review and meta-analysis. Eur. Radiol. 21(8), 1600–1608 (2011)

    Article  Google Scholar 

  3. Cheng, H., Shan, J., Ju, W., Guo, Y., Zhang, L.: Automated breast cancer detection and classification using ultrasound images: a survey. Pattern Recogn. 43(1), 299–317 (2010)

    Article  MATH  Google Scholar 

  4. Lord, S., Lei, W., Craft, P., Cawson, J., Morris, I., Walleser, S., Griffiths, A., Parker, S., Houssami, N.: A systematic review of the effectiveness of magnetic resonance imaging (MRI) as an addition to mammography and ultrasound in screening young women at high risk of breast cancer. Eur. J. Cancer 43(13), 1905–1917 (2007)

    Article  Google Scholar 

  5. Yuan, Y., Giger, M.L., Li, H., Bhooshan, N., Sennett, C.A.: Multimodality computer-aided breast cancer diagnosis with FFDM and DCE-MRI. Acad. Radiol. 17(9), 1158–1167 (2010)

    Article  Google Scholar 

  6. Hopp, T., Dietzel, M., Baltzer, P., Kreisel, P., Kaiser, W., Gemmeke, H., Ruiter, N.: Automatic multimodal 2D/3D breast image registration using biomechanical FEM models and intensity-based optimization. Med. Image Anal. 17(2), 209–218 (2013)

    Article  Google Scholar 

  7. Wu, S., Weinstein, S., Keller, B.M., Conant, E.F., Kontos, D.: Fully-automated fibroglandular tissue segmentation in breast MRI. In: Maidment, A.D.A., Bakic, P.R., Gavenonis, S. (eds.) IWDM 2012. LNCS, vol. 7361, pp. 244–251. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  8. Hopp, T., de Barros Rupp. Simioni, W., Perez, J.E., Ruiter, N.: Comparison of biomechanical models for MRI to X-ray mammography registration. In: Proceedings 3rd MICCAI Workshop on Breast Image Analysis, pp. 81–88 (2015)

    Google Scholar 

  9. Chen, W., Giger, M.L., Li, H., Bick, U., Newstead, G.M.: Volumetric texture analysis of breast lesions on contrast-enhanced magnetic resonance images. Magn. Reson. Med. 58(3), 562–571 (2007)

    Article  Google Scholar 

  10. Degani, H., Gusis, V., Weinstein, D., Fields, S., Strano, S.: Mapping pathophysiological features of breast tumors by MRI at high spatial resolution. Nat. Med. 3(7), 780–782 (1997)

    Article  Google Scholar 

  11. Haralick, R.M., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. 3(6), 610–621 (1973)

    Article  Google Scholar 

  12. Galloway, M.M.: Texture analysis using gray level run lengths. Comput. Graphics Image Process. 4(2), 172–179 (1975)

    Article  Google Scholar 

  13. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)

    Article  MathSciNet  Google Scholar 

  14. Li, H., Wang, Y.J., Liu, K.J.R., Lo, S.C.B., Freedman, M.T.: Computerized radiographic mass detection - part i: lesion site selection by morphological enhancement and contextual segmentation. IEEE Trans. Med. Imaging 20, 289–301 (2001)

    Article  Google Scholar 

  15. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. SIGKDD Expl. 11(1), 10–18 (2009)

    Article  Google Scholar 

  16. Witten, I., Frank, E., Hall, M.A.: Data Mining, 3rd edn. Elsevier, Amsterdam (2011)

    Google Scholar 

  17. Keller, B.M., Nathan, D.L., Wang, Y., Zheng, Y., Gee, J.C., Conant, E.F., Kontos, D.: Estimation of breast percent density in raw and processed full field digital mammography images via adaptive fuzzy c-means clustering and support vector machine segmentation. Med. Phys. 39(8), 4903–4917 (2012)

    Article  Google Scholar 

  18. D’Orsi, C., Sickles, E., Mendelson, E., Morris, E.: ACR BI-RADS Atlas. Breast Imaging Reporting Data Syst. American College of Radiology (2013)

    Google Scholar 

  19. Kuhl, C.K., Schrading, S., Leutner, C.C., Morakkabati-Spitz, N., Wardelmann, E., Fimmers, R., Kuhn, W., Schild, H.H.: Mammography, breast ultrasound, and magnetic resonance imaging for surveillance of women at high familial risk for breast cancer. J. Clin. Oncol. 23(33), 8469–8476 (2005)

    Article  Google Scholar 

  20. Mertzanidou, T., Hipwell, J., Johnsen, S., Han, L., Eiben, B., Taylor, Z., Ourselin, S., Huisman, H., Mann, R., Bick, U., Karssemeijer, N., Hawkes, D.: MRI to x-ray mammography intensity-based registration with simultaneous optimisation of pose and biomechanical transformation parameters. Med. Image Anal. 18(4), 674–683 (2014)

    Article  Google Scholar 

  21. Lee, A., Rajagopal, V., Gamage, T.P.B., Doyle, A.J., Nielsen, P., Nash, M.: Breast lesion co-localisation between X-ray and MR images using finite element modelling. Med. Image Anal. 17(8), 1256–1264 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Hopp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Hopp, T., Neupane, B., Ruiter, N.V. (2016). Automated Multimodal Computer Aided Detection Based on a 3D-2D Image Registration. In: Tingberg, A., Lång, K., Timberg, P. (eds) Breast Imaging. IWDM 2016. Lecture Notes in Computer Science(), vol 9699. Springer, Cham. https://doi.org/10.1007/978-3-319-41546-8_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41546-8_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41545-1

  • Online ISBN: 978-3-319-41546-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics