Abstract
Computer aided detection (CADe) of breast cancer is mainly focused on monomodal applications. We propose an automated multimodal CADe approach, which uses patient-specific image registration of MRI and X-ray mammography to estimate the spatial correspondence of tissue structures. Then, based on the spatial correspondence, features are extracted from both MRI and X-ray mammography. As proof of principle, distinct regions of interest (ROI) were classified into normal and suspect tissue. We investigated the performance of different classifiers, compare our combined approach against a classification with MRI features only and evaluate the influence of the registration error. Using the multimodal information, the sensitivity for detecting suspect ROIs improved by 7 % compared to MRI-only detection. The registration error influences the results: using only datasets with a registration error below \(10\,mm\), the sensitivity for the multimodal detection increases by 10 % to a maximum of 88 %, while the specificity remains constant. We conclude that automatically combining MRI and X-ray can enhance the result of a CADe system.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Cheng, H., Shi, X., Min, R., Hu, L., Cai, X., Du, H.: Approaches for automated detection and classification of masses in mammograms. Pattern Recogn. 39(4), 646–668 (2006)
Dorrius, M., der Weide, M.V., van Ooijen, P., Pijnappel, R., Oudkerk, M.: Computer-aided detection in breast MRI: a systematic review and meta-analysis. Eur. Radiol. 21(8), 1600–1608 (2011)
Cheng, H., Shan, J., Ju, W., Guo, Y., Zhang, L.: Automated breast cancer detection and classification using ultrasound images: a survey. Pattern Recogn. 43(1), 299–317 (2010)
Lord, S., Lei, W., Craft, P., Cawson, J., Morris, I., Walleser, S., Griffiths, A., Parker, S., Houssami, N.: A systematic review of the effectiveness of magnetic resonance imaging (MRI) as an addition to mammography and ultrasound in screening young women at high risk of breast cancer. Eur. J. Cancer 43(13), 1905–1917 (2007)
Yuan, Y., Giger, M.L., Li, H., Bhooshan, N., Sennett, C.A.: Multimodality computer-aided breast cancer diagnosis with FFDM and DCE-MRI. Acad. Radiol. 17(9), 1158–1167 (2010)
Hopp, T., Dietzel, M., Baltzer, P., Kreisel, P., Kaiser, W., Gemmeke, H., Ruiter, N.: Automatic multimodal 2D/3D breast image registration using biomechanical FEM models and intensity-based optimization. Med. Image Anal. 17(2), 209–218 (2013)
Wu, S., Weinstein, S., Keller, B.M., Conant, E.F., Kontos, D.: Fully-automated fibroglandular tissue segmentation in breast MRI. In: Maidment, A.D.A., Bakic, P.R., Gavenonis, S. (eds.) IWDM 2012. LNCS, vol. 7361, pp. 244–251. Springer, Heidelberg (2012)
Hopp, T., de Barros Rupp. Simioni, W., Perez, J.E., Ruiter, N.: Comparison of biomechanical models for MRI to X-ray mammography registration. In: Proceedings 3rd MICCAI Workshop on Breast Image Analysis, pp. 81–88 (2015)
Chen, W., Giger, M.L., Li, H., Bick, U., Newstead, G.M.: Volumetric texture analysis of breast lesions on contrast-enhanced magnetic resonance images. Magn. Reson. Med. 58(3), 562–571 (2007)
Degani, H., Gusis, V., Weinstein, D., Fields, S., Strano, S.: Mapping pathophysiological features of breast tumors by MRI at high spatial resolution. Nat. Med. 3(7), 780–782 (1997)
Haralick, R.M., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. 3(6), 610–621 (1973)
Galloway, M.M.: Texture analysis using gray level run lengths. Comput. Graphics Image Process. 4(2), 172–179 (1975)
Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)
Li, H., Wang, Y.J., Liu, K.J.R., Lo, S.C.B., Freedman, M.T.: Computerized radiographic mass detection - part i: lesion site selection by morphological enhancement and contextual segmentation. IEEE Trans. Med. Imaging 20, 289–301 (2001)
Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. SIGKDD Expl. 11(1), 10–18 (2009)
Witten, I., Frank, E., Hall, M.A.: Data Mining, 3rd edn. Elsevier, Amsterdam (2011)
Keller, B.M., Nathan, D.L., Wang, Y., Zheng, Y., Gee, J.C., Conant, E.F., Kontos, D.: Estimation of breast percent density in raw and processed full field digital mammography images via adaptive fuzzy c-means clustering and support vector machine segmentation. Med. Phys. 39(8), 4903–4917 (2012)
D’Orsi, C., Sickles, E., Mendelson, E., Morris, E.: ACR BI-RADS Atlas. Breast Imaging Reporting Data Syst. American College of Radiology (2013)
Kuhl, C.K., Schrading, S., Leutner, C.C., Morakkabati-Spitz, N., Wardelmann, E., Fimmers, R., Kuhn, W., Schild, H.H.: Mammography, breast ultrasound, and magnetic resonance imaging for surveillance of women at high familial risk for breast cancer. J. Clin. Oncol. 23(33), 8469–8476 (2005)
Mertzanidou, T., Hipwell, J., Johnsen, S., Han, L., Eiben, B., Taylor, Z., Ourselin, S., Huisman, H., Mann, R., Bick, U., Karssemeijer, N., Hawkes, D.: MRI to x-ray mammography intensity-based registration with simultaneous optimisation of pose and biomechanical transformation parameters. Med. Image Anal. 18(4), 674–683 (2014)
Lee, A., Rajagopal, V., Gamage, T.P.B., Doyle, A.J., Nielsen, P., Nash, M.: Breast lesion co-localisation between X-ray and MR images using finite element modelling. Med. Image Anal. 17(8), 1256–1264 (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Hopp, T., Neupane, B., Ruiter, N.V. (2016). Automated Multimodal Computer Aided Detection Based on a 3D-2D Image Registration. In: Tingberg, A., Lång, K., Timberg, P. (eds) Breast Imaging. IWDM 2016. Lecture Notes in Computer Science(), vol 9699. Springer, Cham. https://doi.org/10.1007/978-3-319-41546-8_50
Download citation
DOI: https://doi.org/10.1007/978-3-319-41546-8_50
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-41545-1
Online ISBN: 978-3-319-41546-8
eBook Packages: Computer ScienceComputer Science (R0)