Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Collaborative Online Learning of an Action Model

  • Chapter
  • First Online:
Solving Large Scale Learning Tasks. Challenges and Algorithms

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9580))

  • 1515 Accesses

Abstract

A number of recent works have designed algorithms that allow an agent to revise a relational action model from interactions with its environment and uses this model for building plans and better exploring its environment. This article addresses Multi Agent Relational Action Learning: it considers a community of agents, each rationally acting following some relational action model, and assumes that the observed effect of past actions that led an agent to revise its action model can be communicated to other agents of the community, potentially speeding up the on-line learning process of agents in the community. We describe and experiment a framework for collaborative relational action model revision where each agent is autonomous and benefits from past observations memorized by all agents of the community.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    MAS stands for Multi Agent System.

  2. 2.

    A problem generator for the colored blocks world problem is available at http://lipn.univ-paris13.fr/~rodrigues/colam.

  3. 3.

    http://ipc.icaps-conference.org/.

  4. 4.

    Except in the Rover domain where communication rules are assumed to be known by the agent.

References

  1. Blockeel, H., De Raedt, L.: Top-down induction of first-order logical decision trees. Artif. Intell. 101(1–2), 285–297 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bourgne, G., Bouthinon, D., El Fallah Seghrouchni, A., Soldano, H.: Collaborative concept learning: non individualistic vs. individualistic agents. In: Proceedings of ICTAI, pp. 549–556 (2009)

    Google Scholar 

  3. Bourgne, G., El Fallah-Seghrouchni, A., Soldano, H.: SMILE: sound multi-agent incremental learning. In: Proceedings of AAMAS, p. 38 (2007)

    Google Scholar 

  4. Croonenborghs, T., Ramon, J., Blockeel, H., Bruynooghe, M.: Online learning and exploiting relational models in reinforcement learning. In: Proceedings of IJCAI, pp. 726–731 (2007)

    Google Scholar 

  5. Dzeroski, S., De Raedt, L., Driessens, K.: Relational reinforcement learning. Mach. Learn. 43, 7–50 (2001)

    Article  MATH  Google Scholar 

  6. Esposito, F., Ferilli, S., Fanizzi, N., Basile, T.M.A., Di Mauro, N.: Incremental learning and concept drift in inthelex. Intell. Data Anal. 8(3), 213–237 (2004)

    Google Scholar 

  7. Hoffmann, J.: FF: the fast-forward planning system. AI Mag. 22, 57–62 (2001)

    Google Scholar 

  8. Klingspor, V., Morik, K., Rieger, A.: Learning concepts from sensor data of a mobile robot. Mach. Learn. 23(2–3), 305–332 (1996)

    Google Scholar 

  9. Kulick, J., Toussaint, M., Lang, T., Lopes, M.: Active learning for teaching a robot grounded relational symbols. In: Proceedings of IJCAI (2013)

    Google Scholar 

  10. Lang, T., Toussaint, M., Kersting, K.: Exploration in relational domains for model-based reinforcement learning. JMLR 13, 3725–2768 (2012)

    MathSciNet  MATH  Google Scholar 

  11. McDermott, D.: The 1998 AI planning systems competition. AI Mag. 21(2), 35–55 (2000)

    Google Scholar 

  12. Morik, K.: Sloppy modeling. In: Morik, Katharina (ed.) Knowledge Representation and Organization in Machine Learning. LNCS, vol. 347, pp. 107–134. Springer, Heidelberg (1989)

    Chapter  Google Scholar 

  13. Mourão, K., Zettlemoyer, L.S., Petrick, R.P.A., Steedman, M.: Learning STRIPS operators from noisy and incomplete observations. In: Proceedings of UAI, pp. 614–623 (2012)

    Google Scholar 

  14. Otero, R.: Induction of the indirect effects of actions by monotonic methods. In: Kramer, S., Pfahringer, B. (eds.) ILP 2005. LNCS (LNAI), vol. 3625, pp. 279–294. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  15. Pasula, H.M., Zettlemoyer, L.S., Kaelbling, L.: Learning symbolic models of stochastic domains. JAIR 29, 309–352 (2007)

    MATH  Google Scholar 

  16. Rodrigues, C., Gérard, P., Rouveirol, C., Soldano, H.: Incremental learning of relational action rules. In: Proceedings of ICMLA, pp. 451–458. IEEE Press (2010)

    Google Scholar 

  17. Rodrigues, C., Gérard, P., Rouveirol, C., Soldano, H.: Active learning of relational action models. In: Muggleton, S.H., Tamaddoni-Nezhad, A., Lisi, F.A. (eds.) ILP 2011. LNCS, vol. 7207, pp. 302–316. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  18. Rodrigues, C., Soldano, H., Bourgne, G., Rouveirol, C.: A consistency based approach on action model learning in a community of agents. In: Proceedings of AAMAS, pp. 1557–1558 (2014)

    Google Scholar 

  19. Rodrigues, C., Soldano, H., Bourgne, G., Rouveirol, C.: Multi agent learning of relational action models. In: Proceedings of ECAI, pp. 1087–1088 (2014)

    Google Scholar 

  20. Sutton, R.S.: Dyna, an integrated architecture for learning, planning, and reacting. SIGART Bull. 2, 160–163 (1991)

    Article  Google Scholar 

  21. Xu, J.Z., Laird, J.E.: Instance-based online learning of deterministic relational action models. In: Proceedings of AAAI (2010)

    Google Scholar 

  22. Yang, Q., Wu, K., Jiang, Y.: Learning action models from plan examples using weighted MAX-SAT. Artif. Intell. 171(2–3), 107–143 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhuo, H.H., Nguyen, T.A., Kambhampati, S.: Refining incomplete planning domain models through plan traces. In: Proceedings of IJCAI (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Céline Rouveirol .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rodrigues, C., Soldano, H., Bourgne, G., Rouveirol, C. (2016). Collaborative Online Learning of an Action Model. In: Michaelis, S., Piatkowski, N., Stolpe, M. (eds) Solving Large Scale Learning Tasks. Challenges and Algorithms. Lecture Notes in Computer Science(), vol 9580. Springer, Cham. https://doi.org/10.1007/978-3-319-41706-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41706-6_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41705-9

  • Online ISBN: 978-3-319-41706-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics