Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Segmentation of Intervertebral Discs in 3D MRI Data Using Multi-atlas Based Registration

  • Conference paper
  • First Online:
Computational Methods and Clinical Applications for Spine Imaging (CSI 2015)

Abstract

This paper presents one of the participating methods to the intervertebral disc segmentation challenge organized in conjunction with the 3rd MICCAI Workshop & Challenge on Computational Methods and Clinical Applications for Spine Imaging - MICCAI–CSI2015. The presented method consist of three steps. In the first step, vertebral bodies are detected and labeled using integral channel features and a graphical parts model. The second step consists of image registration, where a set of image volumes with corresponding intervertebral disc atlases are registered to the target volume using the output from the first step as initialization. In the final step, the registered atlases are combined using label fusion to derive the final segmentation. The pipeline was evaluated using a set of \(15+10\) T2-weighted image volumes provided as training and test data respectively for the segmentation challenge. For the training data, a mean disc centroid distance of 0.86 mm and an average DICE score of 91 % was achieved, and for the test data the corresponding results were 0.90 mm and 90 %.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Oktay, A., Albayrak, N., Akgul, Y.: Computer aided diagnosis of degenerative intervertebral disc diseases from lumbar MR images. Comput. Med. Imaging Graph. 38(7), 613–619 (2014)

    Article  Google Scholar 

  2. Chen, C., Belavy, D., Yu, W., Chu, C., Armbrecht, G., Bansmann, M., Felsenberg, D., Zheng, G.: Localization and segmentation of 3D intervertebral discs in MR images by data driven estimation. IEEE Trans. Med. Imaging 34(8), 1719–1729 (2015)

    Article  Google Scholar 

  3. Ghosh, S., Chaudhary, V.: Supervised methods for detection and segmentation of tissues in clinical lumbar MRI. Comput. Med. Imaging Graph. 38(7), 639–649 (2014)

    Article  Google Scholar 

  4. Law, M., Tay, K., Leung, A., Garvin, G., Li, S.: Intervertebral disc segmentation in MR images using anisotropic oriented flux. Med. Image Anal. 17(1), 43–61 (2013)

    Article  Google Scholar 

  5. Michopoulou, S., Costaridou, L., Panagiotopoulos, E., Speller, R., Panayiotakis, G., Todd-Pokropek, A.: Atlas-based segmentation of degenerated lumbar intervertebral siscs from MR images of the spine. IEEE Trans. Biomed. Eng. 56(9), 2225–2231 (2009)

    Article  Google Scholar 

  6. Neubert, A., Fripp, J., Engstrom, C., Schwarz, R., Lauer, L., Salvado, O., Crozier, S.: Automated detection, 3D segmentation and analysis of high resolution spine MR images using statistical shape models. Phys. Med. Biol. 57(24), 8357–8376 (2012)

    Article  Google Scholar 

  7. Lootus, M., Kadir, T., Zisserman, A.: Vertebrae detection and labelling in lumbar MR images. In: Yao, J., et al. (eds.) CSI 2013. LNCV, vol. 17, pp. 219–230. Springer, Switzerland (2014)

    Google Scholar 

  8. Forsberg, D.: Atlas-based registration for accurate segmentation of thoracic and lumbar vertebrae in CT data. In: Yao, J., et al. (eds.) CSI 2014. LNCVB, vol. 20, pp. 49–59. Springer, Switzerland (2015)

    Chapter  Google Scholar 

  9. Dollár, P., Tu, Z., Perona, P., Belongie, S.: Integral channel features. In: Proceedings of 2009 British Machine Vision Conference, BMVC 2009, pp. 91.1–91.11. BMVA Press (2009)

    Google Scholar 

  10. Felzenszwalb, P., Huttenlocher, D.: Pictorial structures for object recognition. Int. J. Comput. Vis. 61(1), 55–79 (2005)

    Article  Google Scholar 

  11. Hemmendorff, M., Andersson, M., Kronander, T., Knutsson, H.: Phase-based multidimensional volume registration. IEEE Trans. Med. Imaging 21(12), 1536–1543 (2002)

    Article  Google Scholar 

  12. Eklund, A., Andersson, M., Knutsson, H.: Phase based volume registration using CUDA. In: Proceedings of 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2010, pp. 658–661. IEEE (2010)

    Google Scholar 

  13. Knutsson, H., Andersson, M.: Morphons: segmentation using elastic canvas and paint on priors. In: Proceedings of 12th IEEE International Conference on Image Processing, ICIP 2005, vol. 2, pp. 1226–1229. IEEE (2005)

    Google Scholar 

  14. Forsberg, D.: Robust image registration for improved clinical efficiency: using local structure analysis and model-based processing. Ph.D. thesis, Linköping University, Sweden (2013)

    Google Scholar 

  15. Forsberg, D., Eklund, A., Andersson, M., Knutsson, H.: Phase-based non-rigid 3D image registration - from minutes to seconds using CUDA. In: Proceedings of Joint MICCAI Workshop on High Performance and Distributed Computing for Medical Imaging - HP/DCI 2011 (2011)

    Google Scholar 

  16. Neubert, A., Fripp, J., Engstrom, C., Crozier, S.: Segmentation of lumbar intervertebral discs from high-resolution 3D MR images using multi-level statistical shape models. In: Yao, J., et al. (eds.) CSI 2013. LNCVB, vol. 17, pp. 173–183. Springer, Switzerland (2014)

    Google Scholar 

Download references

Acknowledgements

The work of D.F. was partially funded by the Swedish Innovation Agency (VINNOVA), grant 2014-01422.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Forsberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Wang, C., Forsberg, D. (2016). Segmentation of Intervertebral Discs in 3D MRI Data Using Multi-atlas Based Registration. In: Vrtovec, T., et al. Computational Methods and Clinical Applications for Spine Imaging. CSI 2015. Lecture Notes in Computer Science(), vol 9402. Springer, Cham. https://doi.org/10.1007/978-3-319-41827-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41827-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41826-1

  • Online ISBN: 978-3-319-41827-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics