Abstract
Gradual degeneration of intervertebral discs of the lumbar spine is one of the most common causes of low back pain. A fully automatic, accurate and robust segmentation of intervertebral discs in magnetic resonance (MR) images is therefore a prerequisite for the computer-aided diagnosis and quantification of intervertebral disc degeneration. In this paper, we propose an automated framework for intervertebral disc segmentation from MR spine images, in which intervertebral disc detection is performed by a landmark-based approach and segmentation by a deformable model-based approach using the self-similarity context (SSC) descriptor. The performance was evaluated on three publicly available databases of MR spine images that represent the training, on-line and on-site testing data for the intervertebral disc localization and segmentation challenge in conjunction with the 3rd MICCAI Workshop & Challenge on Computational Methods and Clinical Applications for Spine Imaging - MICCAI–CSI2015, yielding an overall mean Euclidean distance of 2.4, 1.7 and 2.2 mm for intervertebral disc localization, and an overall mean Dice coefficient of 92.5, 91.5 and 92.0 % for intervertebral disc segmentation for training, on-line and on-site testing data, respectively.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Negrini, S., Bonaiuti, D., Monticone, M., Trevisan, M.: Medical causes of low back pain. In: Slipman, C., et al. (eds.) Interventional Spine: An Algorithmic Approach, pp. 803–811. Saunders Elsevier, Philadelphia (2008)
Prescher, A.: Anatomy and pathology of the aging spine. Eur. J. Radiol. 27(3), 181–195 (1998)
Sizer, P., Phelps, V., Matthijs, O.: Pain generators of the lumbar spine. Pain Pract. 1(3), 255–273 (2001)
An, H., Anderson, P., Haughton, V., Iatridis, J., Kang, J., Lotz, J., Natarajan, R., Oegema, T., Roughley, P., Setton, L., Urban, J., Videman, T., Andersson, G., Weinstein, J.: Introduction: disc degeneration: summary. Spine 29(23), 2677–2678 (2004)
Neubert, A., Fripp, J., Engstrom, C., Schwarz, R., Lauer, L., Salvado, O., Crozier, S.: Automated detection, 3D segmentation and analysis of high resolution spine MR images using statistical shape models. Phys. Med. Biol. 57(24), 8357–8376 (2012)
Kelm, B., Wels, M., Zhou, S., Seifert, S., Suehling, M., Zheng, Y., Comaniciu, D.: Spine detection in CT and MR using iterated marginal space learning. Med. Image Anal. 17(8), 1283–1292 (2013)
Chen, C., Belavy, D., Yu, W., Chu, C., Armbrecht, G., Bansmann, M., Felsenberg, D., Zheng, G.: Localization and segmentation of 3D intervertebral discs in MR images by data driven estimation. IEEE Trans. Med. Imaging 34(8), 1719–1729 (2015)
Korez, R., Likar, B., Pernuš, F., Vrtovec, T.: Parametric modeling of the intervertebral disc space in 3D: application to CT images of the lumbar spine. Comput. Med. Imaging Graph. 38(7), 596–605 (2014)
Haq, R., Aras, R., Besachio, D., Borgie, R., Audette, M.: 3D lumbar spine intervertebral disc segmentation and compression simulation from MRI using shape-aware models. Int. J. Comput. Assist. Radiol. Surg. 10(1), 45–54 (2015)
Ibragimov, B., Likar, B., Pernuš, F., Vrtovec, T.: Shape representation for efficient landmark-based segmentation in 3-D. IEEE Trans. Med. Imaging 33(4), 861–874 (2014)
Ibragimov, B., Prince, J., Murano, E., Woo, J., Stone, M., Likar, B., Pernuš, F., Vrtovec, T.: Segmentation of tongue muscles from super-resolution magnetic resonance images. Med. Image Anal. 20(1), 198–207 (2015)
Myronenko, A., Song, X.: Point set registration: coherent point drift. IEEE Trans. Pattern Anal. Mach. Intell. 32(12), 2262–2275 (2010)
Heinrich, M.P., Jenkinson, M., Papież, B.W., Brady, S.M., Schnabel, J.A.: Towards realtime multimodal fusion for image-guided interventions using self-similarities. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part I. LNCS, vol. 8149, pp. 187–194. Springer, Heidelberg (2013)
Weese, J., Kaus, M.R., Lorenz, C., Lobregt, S., Truyen, R., Pekar, V.: Shape constrained deformable models for 3D medical image segmentation. In: Insana, M.F., Leahy, R.M. (eds.) IPMI 2001. LNCS, vol. 2082, pp. 380–387. Springer, Heidelberg (2001)
Korez, R., Ibragimov, B., Likar, B., Pernuš, F., Vrtovec, T.: A framework for automated spine and vertebrae interpolation-based detection and model-based segmentation. IEEE Trans. Med. Imaging 34(8), 1649–1662 (2015)
Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986)
Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
Zheng, Y., Barbu, A., Georgescu, B., Scheuering, M., Comaniciu, D.: Four-chamber heart modeling and automatic segmentation for 3-D cardiac CT volumes using marginal space learning and steerable features. IEEE Trans. Med. Imaging 27(11), 1668–1681 (2008)
Acknowledgements
This work was supported by the Slovenian Research Agency (ARRS) under grants P2-0232, J2-5473 and J7-6781.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Korez, R., Ibragimov, B., Likar, B., Pernuš, F., Vrtovec, T. (2016). Deformable Model-Based Segmentation of Intervertebral Discs from MR Spine Images by Using the SSC Descriptor. In: Vrtovec, T., et al. Computational Methods and Clinical Applications for Spine Imaging. CSI 2015. Lecture Notes in Computer Science(), vol 9402. Springer, Cham. https://doi.org/10.1007/978-3-319-41827-8_11
Download citation
DOI: https://doi.org/10.1007/978-3-319-41827-8_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-41826-1
Online ISBN: 978-3-319-41827-8
eBook Packages: Computer ScienceComputer Science (R0)