Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Deformable Model-Based Segmentation of Intervertebral Discs from MR Spine Images by Using the SSC Descriptor

  • Conference paper
  • First Online:
Computational Methods and Clinical Applications for Spine Imaging (CSI 2015)

Abstract

Gradual degeneration of intervertebral discs of the lumbar spine is one of the most common causes of low back pain. A fully automatic, accurate and robust segmentation of intervertebral discs in magnetic resonance (MR) images is therefore a prerequisite for the computer-aided diagnosis and quantification of intervertebral disc degeneration. In this paper, we propose an automated framework for intervertebral disc segmentation from MR spine images, in which intervertebral disc detection is performed by a landmark-based approach and segmentation by a deformable model-based approach using the self-similarity context (SSC) descriptor. The performance was evaluated on three publicly available databases of MR spine images that represent the training, on-line and on-site testing data for the intervertebral disc localization and segmentation challenge in conjunction with the 3rd MICCAI Workshop & Challenge on Computational Methods and Clinical Applications for Spine Imaging - MICCAI–CSI2015, yielding an overall mean Euclidean distance of 2.4, 1.7 and 2.2 mm for intervertebral disc localization, and an overall mean Dice coefficient of 92.5, 91.5 and 92.0 % for intervertebral disc segmentation for training, on-line and on-site testing data, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Negrini, S., Bonaiuti, D., Monticone, M., Trevisan, M.: Medical causes of low back pain. In: Slipman, C., et al. (eds.) Interventional Spine: An Algorithmic Approach, pp. 803–811. Saunders Elsevier, Philadelphia (2008)

    Google Scholar 

  2. Prescher, A.: Anatomy and pathology of the aging spine. Eur. J. Radiol. 27(3), 181–195 (1998)

    Article  Google Scholar 

  3. Sizer, P., Phelps, V., Matthijs, O.: Pain generators of the lumbar spine. Pain Pract. 1(3), 255–273 (2001)

    Article  Google Scholar 

  4. An, H., Anderson, P., Haughton, V., Iatridis, J., Kang, J., Lotz, J., Natarajan, R., Oegema, T., Roughley, P., Setton, L., Urban, J., Videman, T., Andersson, G., Weinstein, J.: Introduction: disc degeneration: summary. Spine 29(23), 2677–2678 (2004)

    Article  Google Scholar 

  5. Neubert, A., Fripp, J., Engstrom, C., Schwarz, R., Lauer, L., Salvado, O., Crozier, S.: Automated detection, 3D segmentation and analysis of high resolution spine MR images using statistical shape models. Phys. Med. Biol. 57(24), 8357–8376 (2012)

    Article  Google Scholar 

  6. Kelm, B., Wels, M., Zhou, S., Seifert, S., Suehling, M., Zheng, Y., Comaniciu, D.: Spine detection in CT and MR using iterated marginal space learning. Med. Image Anal. 17(8), 1283–1292 (2013)

    Article  Google Scholar 

  7. Chen, C., Belavy, D., Yu, W., Chu, C., Armbrecht, G., Bansmann, M., Felsenberg, D., Zheng, G.: Localization and segmentation of 3D intervertebral discs in MR images by data driven estimation. IEEE Trans. Med. Imaging 34(8), 1719–1729 (2015)

    Article  Google Scholar 

  8. Korez, R., Likar, B., Pernuš, F., Vrtovec, T.: Parametric modeling of the intervertebral disc space in 3D: application to CT images of the lumbar spine. Comput. Med. Imaging Graph. 38(7), 596–605 (2014)

    Article  Google Scholar 

  9. Haq, R., Aras, R., Besachio, D., Borgie, R., Audette, M.: 3D lumbar spine intervertebral disc segmentation and compression simulation from MRI using shape-aware models. Int. J. Comput. Assist. Radiol. Surg. 10(1), 45–54 (2015)

    Article  Google Scholar 

  10. Ibragimov, B., Likar, B., Pernuš, F., Vrtovec, T.: Shape representation for efficient landmark-based segmentation in 3-D. IEEE Trans. Med. Imaging 33(4), 861–874 (2014)

    Article  Google Scholar 

  11. Ibragimov, B., Prince, J., Murano, E., Woo, J., Stone, M., Likar, B., Pernuš, F., Vrtovec, T.: Segmentation of tongue muscles from super-resolution magnetic resonance images. Med. Image Anal. 20(1), 198–207 (2015)

    Article  Google Scholar 

  12. Myronenko, A., Song, X.: Point set registration: coherent point drift. IEEE Trans. Pattern Anal. Mach. Intell. 32(12), 2262–2275 (2010)

    Article  Google Scholar 

  13. Heinrich, M.P., Jenkinson, M., Papież, B.W., Brady, S.M., Schnabel, J.A.: Towards realtime multimodal fusion for image-guided interventions using self-similarities. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part I. LNCS, vol. 8149, pp. 187–194. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  14. Weese, J., Kaus, M.R., Lorenz, C., Lobregt, S., Truyen, R., Pekar, V.: Shape constrained deformable models for 3D medical image segmentation. In: Insana, M.F., Leahy, R.M. (eds.) IPMI 2001. LNCS, vol. 2082, pp. 380–387. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  15. Korez, R., Ibragimov, B., Likar, B., Pernuš, F., Vrtovec, T.: A framework for automated spine and vertebrae interpolation-based detection and model-based segmentation. IEEE Trans. Med. Imaging 34(8), 1649–1662 (2015)

    Article  Google Scholar 

  16. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986)

    Article  Google Scholar 

  17. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Zheng, Y., Barbu, A., Georgescu, B., Scheuering, M., Comaniciu, D.: Four-chamber heart modeling and automatic segmentation for 3-D cardiac CT volumes using marginal space learning and steerable features. IEEE Trans. Med. Imaging 27(11), 1668–1681 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Slovenian Research Agency (ARRS) under grants P2-0232, J2-5473 and J7-6781.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Korez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Korez, R., Ibragimov, B., Likar, B., Pernuš, F., Vrtovec, T. (2016). Deformable Model-Based Segmentation of Intervertebral Discs from MR Spine Images by Using the SSC Descriptor. In: Vrtovec, T., et al. Computational Methods and Clinical Applications for Spine Imaging. CSI 2015. Lecture Notes in Computer Science(), vol 9402. Springer, Cham. https://doi.org/10.1007/978-3-319-41827-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41827-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41826-1

  • Online ISBN: 978-3-319-41827-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics