Abstract
Dynamical systems can give information and can be used in applications in various domains. It is important to know the type of information which will be extracted. In an era when everybody is speaking and is producing information that can be referred as big data, here, the way to extract relevant information by sampling a signal is investigated. Each state variable of a dynamical system is sampled with a specific frequency in order to obtain data sets which are statistical independent. The system can provide numbers for random generators and the sequence obtained can be easily reproduced. These type of generators can be used in cryptography.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Badea, B., Vlad, A.: Revealing statistical independence of two experimental data sets: an improvement on spearman’s algorithm. In: Gavrilova, M.L., Gervasi, O., Kumar, V., Tan, C.J.K., Taniar, D., Laganá, A., Mun, Y., Choo, H. (eds.) ICCSA 2006. LNCS, vol. 3980, pp. 1166–1176. Springer, Heidelberg (2006)
Baptista, M.S.: Cryptography with chaos. Phys. Lett. A 240(1–2), 50–54 (1998)
Chen, G., Han, B.: An audio scrambling degree measure based on information criteria. In: Proceedings of the 2nd International Signal Processing Systems (ICSPS) Conference, vol. 1 (2010)
Dogaru, I., Dogaru, R., Damian, C.: Fpga implementation of chaotic cellular automaton with binary synchronization property. In: Proceedings of the 8th International Communications (COMM) Conference, pp. 45–48 (2010)
Frunzete, M., Luca, A., Vlad, A.: On the statistical independence in the context of the rössler map. In: 3rd Chaotic Modeling and Simulation International Conference (CHAOS2010), Chania, Greece (2010). http://cmsim.net/sitebuildercontent/sitebuilderfiles/
Frunzete, M., Barbot, J.-P., Letellier, C.: Influence of the singular manifold of nonobservable states in reconstructing chaotic attractors. Phys. Rev. E 86(2), 26205 (2012)
Frunzete, M., Luca, A., Vlad, A., Barbot, J.-P.: Statistical behaviour of discrete-time rössler system with time varying delay. In: Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2011, Part I. LNCS, vol. 6782, pp. 706–720. Springer, Heidelberg (2011)
Frunzete, M., Luca, A., Vlad, A., Barbot, J.-P.: Observability and singularity in the context of roessler map. Univ. “Politehnica” Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 74(1), 83–92 (2012)
García, J.E., González-López, V.A.: Independence tests for continuous random variables based on the longest increasing subsequence. J. Multivar. Anal. 127, 126–146 (2014)
Grigoras, V., Tataru, V., Grigoras, C.: Chaos modulation communication channel: A case study. In: Proceedings of International Symposium Signals, Circuits and Systems ISSCS 2009, pp. 1–4 (2009)
Hodea, O., Vlad, A.: Logistic map sensitivity to control parameter and its implications in the statistical behaviour. In: 2013 International Symposium on Signals, Circuits and Systems (ISSCS), pp. 1–4, July 2013
Hodea, O., Vlad, A., Datcu, O.: Evaluating the sampling distance to achieve independently and identically distributed data from generalized h énon map. In: 2011 10th International Symposium on Signals, Circuits and Systems (ISSCS), pp. 1–4, June 2011
Ivan, C., Serbanescu, A.: Applications of nonlinear time-series analysis in unstable periodic orbits identification - chaos control in buck converter. In: Proceedings of International Symposium Signals, Circuits and Systems ISSCS 2009, pp. 1–4 (2009)
Edward, N.: Lorenz.: Deterministic nonperiodic flow. J. Atmos. Sci. 20(2), 130–141 (1963)
Peinke, J., Parisi, J., Rössler, O.E., Stoop, R.: Encounter with chaos: self-organized hierarchical complexity in semiconductor experiments. Springer Science & Business Media (2012)
Perruquetti, W., Barbot, J.-P.: Chaos in automatic control. CRC Press, Taylor & Francis Group (2006)
Poincaré, H., Goroff, D.: New Methods of Celestial Mechanics. AIP Press, Williston (1903)
Rössler, O.E.: An equation for hyperchaos. Phys. Lett. A 71(2–3), 155–157 (1979)
Smirnov, N.: Table for estimating the goodness of fit of empirical distributions. Ann. Math. Stat. 19(2), 279–281 (1948)
Soofi, A.S., Cao, L.: Modelling and forecasting financial data: techniques of nonlinear dynamics, vol. 2. Springer Science & Business Media (2012)
Letellier, C., Aguirre, L.A.: Interplay between synchronization, observability, and dynamics. Phys. Rev. E 82(1), 016204 (2010)
Vlad, A., Luca, A., Frunzete, M.: Computational measurements of the transient time and of the sampling distance that enables statistical independence in the logistic map. In: Gervasi, O., Taniar, D., Murgante, B., Laganà, A., Mun, Y., Gavrilova, M.L. (eds.) ICCSA 2009, Part II. LNCS, vol. 5593, pp. 703–718. Springer, Heidelberg (2009)
Lei, Y., Barbot, J.-P., Zheng, G., Sun, H.: Compressive sensing with chaotic sequence. IEEE Signal Process. Lett. 17(8), 731–734 (2010)
Acknowledgment
This work was supported by a grant of the Romanian Space Agency, Space Technology and Advanced Research (STAR) Programme, project number 75/29.11.2013.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Frunzete, M., Perisoara, L., Barbot, JP. (2016). Continuous Time Dynamical System and Statistical Independence. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2016. ICCSA 2016. Lecture Notes in Computer Science(), vol 9786. Springer, Cham. https://doi.org/10.1007/978-3-319-42085-1_36
Download citation
DOI: https://doi.org/10.1007/978-3-319-42085-1_36
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-42084-4
Online ISBN: 978-3-319-42085-1
eBook Packages: Computer ScienceComputer Science (R0)