Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Point Placement in an Inexact Model with Applications

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2016 (ICCSA 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9786))

Included in the following conference series:

  • 1238 Accesses

Abstract

The point placement problem is to determine the locations of n distinct points on a line uniquely (up to translation and reflection) by making the fewest possible pairwise distance queries of an adversary. A number of deterministic and randomized algorithms are available when distances are known exactly. In this paper, we discuss the problem in an inexact model. This is when distances returned by the adversary are not exact; instead, only upper and lower bounds on the distances are provided. We propose an algorithm called DGPL for this problem that is based on a distance geometry approach that Havel [8] used to solve the molecular conformation problem. Our algorithm does not address the problems of query choices and their minimization; these remain open. We have used our DGPL algorithm for the probe location problem in DNA mapping, where upper and lower bounds on distance between some pairs of probes are known. Experiments show the superior performance of our algorithm compared to that of an algorithm by Mumey [9] for the same problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Blumenthal, L.M.: Theory and Applications of Distance Geometry. Chelsea, New York (1970)

    MATH  Google Scholar 

  2. Chin, F.Y.L., Leung, H.C.M., Sung, W.K., Yiu, S.M.: The point placement problem on a line – improved bounds for pairwise distance queries. In: Giancarlo, R., Hannenhalli, S. (eds.) WABI 2007. LNCS (LNBI), vol. 4645, pp. 372–382. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  3. Damaschke, P.: Point placement on the line by distance data. Discrete Appl. Math. 127(1), 53–62 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Eckart, C., Young, G.: The approximation of one matrix by another of lower rank. Psychometrika 1(3), 211–218 (1936)

    Article  MATH  Google Scholar 

  5. Malliavin, T.E., Mucherino, A., Nilges, M.: Distance geometry in structural biology: new perspectives. In: Distance Geometry, pp. 329–350. Springer, New York (2013)

    Google Scholar 

  6. Mukhopadhyay, A., Sarker, P.K., Kannan, K.K.V.: Randomized versus deterministic point placement algorithms: an experimental study. In: Gervasi, O., Murgante, B., Misra, S., Gavrilova, M.L., Rocha, A.M.A.C., Torre, C., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2015. LNCS, vol. 9156, pp. 185–196. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  7. Roy, K., Panigrahi, S.C., Mukhopadhyay, A.: Multiple alignment of structures using center of proteins. In: Harrison, R., Li, Y., Măndoiu, I. (eds.) ISBRA 2015. LNCS, vol. 9096, pp. 284–296. Springer, Heidelberg (2015)

    Google Scholar 

  8. Havel, T.F.: Distance geometry: theory, algorithms, and chemical applications. Encycl. Comput. Chem. 120, 723–742 (1998)

    Google Scholar 

  9. Mumey, B.: Probe location in the presence of errors: a problem from DNA mapping. Discrete Appl. Math. 104(1), 187–201 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Young, G., Householder, A.S.: Discussion of a set of points in terms of their mutual distances. Psychometrika 3(1), 19–22 (1938)

    Article  MATH  Google Scholar 

  11. Saxe, J.B.: Embeddability of weighted graphs in \(k\)-space is strongly NP-hard. In: 17th Allerton Conference on Communication, Control and Computing, pp. 480–489 (1979)

    Google Scholar 

  12. Mukhopadhyay, A., Rao, S.V., Pardeshi, S., Gundlapalli, S.: Linear layouts of weakly triangulated graphs. In: Pal, S.P., Sadakane, K. (eds.) WALCOM 2014. LNCS, vol. 8344, pp. 322–336. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  13. Alam, M.S., Mukhopadhyay, A.: More on generalized jewels and the point placement problem. J. Graph Algorithms Appl. 18(1), 133–173 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Alam, M.S., Mukhopadhyay, A.: Three paths to point placement. In: Ganguly, S., Krishnamurti, R. (eds.) CALDAM 2015. LNCS, vol. 8959, pp. 33–44. Springer, Heidelberg (2015)

    Google Scholar 

  15. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. The MIT Press and McGraw-Hill Book Company (1989)

    Google Scholar 

  16. Buetow, K.H., Chakravarti, A.: Multipoint gene mapping using seriation. i. general methods. Am. J. Hum. Genet. 41(2), 180 (1987)

    Google Scholar 

  17. Pinkerton, B.: Results of a simulated annealing algorithm for fish mapping. Communicated by Dr. Larry Ruzzo, University of Washington (1993)

    Google Scholar 

  18. Redstone, J., Ruzzo, W.L.: Algorithms for a simple point placement problem. In: Bongiovanni, G., Petreschi, R., Gambosi, G. (eds.) CIAC 2000. LNCS, vol. 1767, pp. 32–43. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  19. Crippen, G.M., Havel, T.F.: Distance Geometry and Molecular Conformation, vol. 74. Research Studies Press Somerset, England (1988)

    MATH  Google Scholar 

  20. Dress, A.W.M., Havel, T.F.: Shortest-path problems and molecular conformation. Discrete Appl. Math. 19(1–3), 129–144 (1988)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asish Mukhopadhyay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Kannan, K.K.V., Sarker, P.K., Turdaliev, A., Mukhopadhyay, A. (2016). Point Placement in an Inexact Model with Applications. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2016. ICCSA 2016. Lecture Notes in Computer Science(), vol 9786. Springer, Cham. https://doi.org/10.1007/978-3-319-42085-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42085-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42084-4

  • Online ISBN: 978-3-319-42085-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics