Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Identifying miRNA-mRNA Regulatory Modules Based on Overlapping Neighborhood Expansion from Multiple Types of Genomic Data

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9771))

Included in the following conference series:

Abstract

MicroRNA (miRNA)-mRNA regulatory modules are key entities to disorders. Several computational methods are developed to identify miRNA-mRNA modules. Although these methods have achieved ideal performance, the number of modules needed to be predefined. Therefore, identification of modules is still computationally challenging. In this study, a new algorithm called MiRMD (miRNA-mRNA Regulatory Modules Detection) is presented to identify miRNA-mRNA modules, which do not need to predefine the number of modules. Firstly, a miRNA-mRNA regulatory network is constructed, then core structures are detected in this network by merging cohesive modules. Next, some overlapping neighbor nodes are added into the cores according to the density. Finally, some overlap modules are filtered. The experimental results based on three cancers datasets show that modules identified by MiRMD are more coherent and functional enriched than the other two methods according to MiMEC and GO enrichment. Particularly, modules identified by our method are strongly implicated in cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bartel, D.P.: MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233 (2009)

    Article  Google Scholar 

  2. Ambros, V.: The functions of animal micrornas. Nature 431, 350–355 (2004)

    Article  Google Scholar 

  3. Du, T., Zamore, P.D.: Beginning to understand microRNA function. Cell Res. 17, 661–663 (2007)

    Article  Google Scholar 

  4. Bushati, N., Cohen, S.M.: Microrna functions. Annu. Rev. Cell Dev. Biol. 23, 175–205 (2007)

    Article  Google Scholar 

  5. Iorio, M.V., Ferracin, M., Liu, C.G., Veronese, A., Spizzo, R., Sabbioni, S., Magri, E., Pedriali, M., Fabbri, M., Campiglio, M., Mnard, S., Palazzo, J.P., Rosenberg, A., Musiani, P., Volinia, S., Nenci, I., Calin, G.A., Querzoli, P., Negrini, M., Croce, C.M.: MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 65, 7065–7070 (2005)

    Article  Google Scholar 

  6. Porkka, K.P., Pfeiffer, M.J., Waltering, K.K., Vessella, R.L., Tammela, T.L.J., Visakorpi, T.: microRNA expression profiling in prostate cancer. Cancer Res. 67, 6130–6135 (2007)

    Article  Google Scholar 

  7. Cui, Q., Yu, Z., Purisima, E.O., Wang, W.: Principles of microRNA regulation of a human cellular signaling network. Mol. Syst. Bio. 2, 46 (2006)

    Google Scholar 

  8. Liang, H., Li, W.H.: microRNA regulation of human protein–protein interaction network. RNA 13, 1402–1408 (2007)

    Article  Google Scholar 

  9. Gusev, Y., Schmittgen, T.D., Lerner, M., Postier, R., Brackett, D.: Computational analysis of biological functions and pathways collectively targeted by co-expressed microRNAs in Cancer. BMC Bioinform. 8, S16 (2007)

    Article  Google Scholar 

  10. Xu, J., Wong, C.: A computational screen for mouse signaling pathways targeted by microRNA clusters. RNA 14, 1276–1283 (2008)

    Article  Google Scholar 

  11. Hartwell, L.H., John, J.H., Leibler, S., Murray, A.W.: From molecular to modular cell biology. Nature 402, C47–C52 (1999)

    Article  Google Scholar 

  12. Croce, C.M.: Causes and consequences of microRNA dysregulation in cancer. Nat. Rev. Genet. 10, 704–714 (2009)

    Article  Google Scholar 

  13. Joung, J.G., Hwang, K.-B., Nam, J.-W., Zhang, B.T.: Discovery of microRNA-mRNA modules via population based probabilistic learning. Bioinformatics 23, 1141–1147 (2007)

    Article  Google Scholar 

  14. Shalgi, R., Lieber, D., Oren, M., Pilpel, Y.: Global and local architecture of the mammalian microRNA transcription factor regulatory network. PLoS Comput. Biol. 3, e131 (2007)

    Article  Google Scholar 

  15. Liu, B., Liu, L., Tsykin, A., Goodall, G.J., Green, J.E., Zhu, M., Kim, C.H., Li, J.: Identifying functional miRNA-mRNA regulatory modules with correspondence latent Dirichlet allocation. Bioinformatics 26, 3015–3111 (2010)

    Google Scholar 

  16. Zhang, S., Li, Q., Liu, J., Zhou, X.J.: A novel computational framework for simultaneous integration of multiple types of genomic data to identify microRNA-gene regulatory modules. Bioinformatics 27, i401–i409 (2011)

    Article  Google Scholar 

  17. Pio, G., Ceci, M., D’Elia, D., Loglisci, C., Malerba, D.: A novel biclustering algorithm for the discovery of meaningful biological correlations between microRNAs and their target genes. BMC Bioinform. 14, S8 (2013)

    Article  Google Scholar 

  18. Li, Y., Liang, C., Wong, K.C., Luo, J., Zhang, L.: Mirsynergy: detecting synergistic miRNA regulatory modules by overlapping neighbourhood expansion. Bioinformatics 30, i2627–i2635 (2014)

    Article  Google Scholar 

  19. Lewis, B.P., Burge, C.B., Bartel, D.P.: Conserved seed pairing, often flanked by Adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15–20 (2005)

    Article  Google Scholar 

  20. Krek, A., Grun, D., Proy, M.N., Wolf, R., Rosenberg, L., Epstein, E.J., MacMenamin, P., da Piedade, I., Gunsalus, K.C., Stoffel, M., Rajewsky, N.: Combinatorial microRNA target predictions. Nat. Genet. 37, 495–500 (2005)

    Article  Google Scholar 

  21. Huang, J.C., Babak, T., Corson, T.W., Chua, G., Khan, S., Gallie, B.L., Hughes, T.R., Blencowe, B.J., Frey, B.J., Morris, Q.D.: Using expression profiling data to identify human microRNA targets. Nat. Methods 4, 1045–1049 (2007)

    Article  Google Scholar 

  22. Lu, Y., Zhou, Y., Qu, W., Minghua, D., Chenggang, Z.: A Lasso regression model for the construction of microRNA target regulatory networks. Bioinformatics 27, 2406–2413 (2011)

    Article  Google Scholar 

  23. Min, W., Li, X., Kwoh, C.-K., Ng, S.K.: A core-attachment based method to detect protein complexes in PPI networks. BMC Bioinform. 10, 169 (2009)

    Article  Google Scholar 

  24. Nepusz, T., Yu, H., Paccanaro, A.: Detecting overlapping protein complexes in protein-protein interaction networks. Nat. Methods 9, 471–472 (2012)

    Article  Google Scholar 

  25. Wingender, E., Chen, X., Hehl, R., Karas, H., Liebich, I., Matys, V., Meinhardt, T., Prss, M., Reuter, I., Schacherer, F.: TRANSFAC: an integrated system for gene expression regulation. Nucl. Acids Res. 28, 316–319 (2000)

    Article  Google Scholar 

  26. Friedman, R.C., Farh, K.K., Burge, C.B., Bartel, D.P.: Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 19, 92–105 (2009)

    Article  Google Scholar 

  27. Livstone, M.S., Breitkreutz, B.J., Stark, C., Boucher, L., Andrew, C.A., Oughtred, R., Nixon, J., Reguly, T., Rust, J., Winter, A., Dolinski, K., Tyers, M.: The BioGRID interaction database: 2011 update. Nucl. Acids Res. 39, D698–D704 (2011)

    Article  Google Scholar 

  28. Karim, S., Masud, M., Liu, L., Le, T.D., Lim, J.: Identification of miRNA-mRNA regulatory modules by exploring collective group relationships. BMC Genomics 17, 7 (2015)

    Article  Google Scholar 

  29. Chen, L., Wang, H., Zhang, L., Wan, L., Wang, Q., Yukui, S., He, Y., He, W.: Uncovering packaging features of co-regulated modules based on human protein interaction and transcriptional regulatory networks. BMC Bioinform. 11, 392 (2011)

    Article  Google Scholar 

  30. Koturbash, I., Zemp, F.J., Pogribny, I., Kovalchuk, O.: Small molecules with big effects: the role of the microRNAome in cancer and carcinogennesis. Mutat. Res. 722, 94–105 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the assistance provided by National Natural Science Foundation of China (Grant nos. 61572180 and 61472467) and Hunan Provincial Natural Science Foundation of China (Grant no. 13JJ2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiawei Luo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Luo, J., Liu, B., Cao, B., Wang, S. (2016). Identifying miRNA-mRNA Regulatory Modules Based on Overlapping Neighborhood Expansion from Multiple Types of Genomic Data. In: Huang, DS., Bevilacqua, V., Premaratne, P. (eds) Intelligent Computing Theories and Application. ICIC 2016. Lecture Notes in Computer Science(), vol 9771. Springer, Cham. https://doi.org/10.1007/978-3-319-42291-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42291-6_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42290-9

  • Online ISBN: 978-3-319-42291-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics