Abstract
MicroRNA (miRNA)-mRNA regulatory modules are key entities to disorders. Several computational methods are developed to identify miRNA-mRNA modules. Although these methods have achieved ideal performance, the number of modules needed to be predefined. Therefore, identification of modules is still computationally challenging. In this study, a new algorithm called MiRMD (miRNA-mRNA Regulatory Modules Detection) is presented to identify miRNA-mRNA modules, which do not need to predefine the number of modules. Firstly, a miRNA-mRNA regulatory network is constructed, then core structures are detected in this network by merging cohesive modules. Next, some overlapping neighbor nodes are added into the cores according to the density. Finally, some overlap modules are filtered. The experimental results based on three cancers datasets show that modules identified by MiRMD are more coherent and functional enriched than the other two methods according to MiMEC and GO enrichment. Particularly, modules identified by our method are strongly implicated in cancer.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bartel, D.P.: MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233 (2009)
Ambros, V.: The functions of animal micrornas. Nature 431, 350–355 (2004)
Du, T., Zamore, P.D.: Beginning to understand microRNA function. Cell Res. 17, 661–663 (2007)
Bushati, N., Cohen, S.M.: Microrna functions. Annu. Rev. Cell Dev. Biol. 23, 175–205 (2007)
Iorio, M.V., Ferracin, M., Liu, C.G., Veronese, A., Spizzo, R., Sabbioni, S., Magri, E., Pedriali, M., Fabbri, M., Campiglio, M., Mnard, S., Palazzo, J.P., Rosenberg, A., Musiani, P., Volinia, S., Nenci, I., Calin, G.A., Querzoli, P., Negrini, M., Croce, C.M.: MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 65, 7065–7070 (2005)
Porkka, K.P., Pfeiffer, M.J., Waltering, K.K., Vessella, R.L., Tammela, T.L.J., Visakorpi, T.: microRNA expression profiling in prostate cancer. Cancer Res. 67, 6130–6135 (2007)
Cui, Q., Yu, Z., Purisima, E.O., Wang, W.: Principles of microRNA regulation of a human cellular signaling network. Mol. Syst. Bio. 2, 46 (2006)
Liang, H., Li, W.H.: microRNA regulation of human protein–protein interaction network. RNA 13, 1402–1408 (2007)
Gusev, Y., Schmittgen, T.D., Lerner, M., Postier, R., Brackett, D.: Computational analysis of biological functions and pathways collectively targeted by co-expressed microRNAs in Cancer. BMC Bioinform. 8, S16 (2007)
Xu, J., Wong, C.: A computational screen for mouse signaling pathways targeted by microRNA clusters. RNA 14, 1276–1283 (2008)
Hartwell, L.H., John, J.H., Leibler, S., Murray, A.W.: From molecular to modular cell biology. Nature 402, C47–C52 (1999)
Croce, C.M.: Causes and consequences of microRNA dysregulation in cancer. Nat. Rev. Genet. 10, 704–714 (2009)
Joung, J.G., Hwang, K.-B., Nam, J.-W., Zhang, B.T.: Discovery of microRNA-mRNA modules via population based probabilistic learning. Bioinformatics 23, 1141–1147 (2007)
Shalgi, R., Lieber, D., Oren, M., Pilpel, Y.: Global and local architecture of the mammalian microRNA transcription factor regulatory network. PLoS Comput. Biol. 3, e131 (2007)
Liu, B., Liu, L., Tsykin, A., Goodall, G.J., Green, J.E., Zhu, M., Kim, C.H., Li, J.: Identifying functional miRNA-mRNA regulatory modules with correspondence latent Dirichlet allocation. Bioinformatics 26, 3015–3111 (2010)
Zhang, S., Li, Q., Liu, J., Zhou, X.J.: A novel computational framework for simultaneous integration of multiple types of genomic data to identify microRNA-gene regulatory modules. Bioinformatics 27, i401–i409 (2011)
Pio, G., Ceci, M., D’Elia, D., Loglisci, C., Malerba, D.: A novel biclustering algorithm for the discovery of meaningful biological correlations between microRNAs and their target genes. BMC Bioinform. 14, S8 (2013)
Li, Y., Liang, C., Wong, K.C., Luo, J., Zhang, L.: Mirsynergy: detecting synergistic miRNA regulatory modules by overlapping neighbourhood expansion. Bioinformatics 30, i2627–i2635 (2014)
Lewis, B.P., Burge, C.B., Bartel, D.P.: Conserved seed pairing, often flanked by Adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15–20 (2005)
Krek, A., Grun, D., Proy, M.N., Wolf, R., Rosenberg, L., Epstein, E.J., MacMenamin, P., da Piedade, I., Gunsalus, K.C., Stoffel, M., Rajewsky, N.: Combinatorial microRNA target predictions. Nat. Genet. 37, 495–500 (2005)
Huang, J.C., Babak, T., Corson, T.W., Chua, G., Khan, S., Gallie, B.L., Hughes, T.R., Blencowe, B.J., Frey, B.J., Morris, Q.D.: Using expression profiling data to identify human microRNA targets. Nat. Methods 4, 1045–1049 (2007)
Lu, Y., Zhou, Y., Qu, W., Minghua, D., Chenggang, Z.: A Lasso regression model for the construction of microRNA target regulatory networks. Bioinformatics 27, 2406–2413 (2011)
Min, W., Li, X., Kwoh, C.-K., Ng, S.K.: A core-attachment based method to detect protein complexes in PPI networks. BMC Bioinform. 10, 169 (2009)
Nepusz, T., Yu, H., Paccanaro, A.: Detecting overlapping protein complexes in protein-protein interaction networks. Nat. Methods 9, 471–472 (2012)
Wingender, E., Chen, X., Hehl, R., Karas, H., Liebich, I., Matys, V., Meinhardt, T., Prss, M., Reuter, I., Schacherer, F.: TRANSFAC: an integrated system for gene expression regulation. Nucl. Acids Res. 28, 316–319 (2000)
Friedman, R.C., Farh, K.K., Burge, C.B., Bartel, D.P.: Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 19, 92–105 (2009)
Livstone, M.S., Breitkreutz, B.J., Stark, C., Boucher, L., Andrew, C.A., Oughtred, R., Nixon, J., Reguly, T., Rust, J., Winter, A., Dolinski, K., Tyers, M.: The BioGRID interaction database: 2011 update. Nucl. Acids Res. 39, D698–D704 (2011)
Karim, S., Masud, M., Liu, L., Le, T.D., Lim, J.: Identification of miRNA-mRNA regulatory modules by exploring collective group relationships. BMC Genomics 17, 7 (2015)
Chen, L., Wang, H., Zhang, L., Wan, L., Wang, Q., Yukui, S., He, Y., He, W.: Uncovering packaging features of co-regulated modules based on human protein interaction and transcriptional regulatory networks. BMC Bioinform. 11, 392 (2011)
Koturbash, I., Zemp, F.J., Pogribny, I., Kovalchuk, O.: Small molecules with big effects: the role of the microRNAome in cancer and carcinogennesis. Mutat. Res. 722, 94–105 (2011)
Acknowledgments
The authors would like to acknowledge the assistance provided by National Natural Science Foundation of China (Grant nos. 61572180 and 61472467) and Hunan Provincial Natural Science Foundation of China (Grant no. 13JJ2017).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Luo, J., Liu, B., Cao, B., Wang, S. (2016). Identifying miRNA-mRNA Regulatory Modules Based on Overlapping Neighborhood Expansion from Multiple Types of Genomic Data. In: Huang, DS., Bevilacqua, V., Premaratne, P. (eds) Intelligent Computing Theories and Application. ICIC 2016. Lecture Notes in Computer Science(), vol 9771. Springer, Cham. https://doi.org/10.1007/978-3-319-42291-6_23
Download citation
DOI: https://doi.org/10.1007/978-3-319-42291-6_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-42290-9
Online ISBN: 978-3-319-42291-6
eBook Packages: Computer ScienceComputer Science (R0)