Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

An Augmented Artificial Bee Colony with Hybrid Learning for Traveling Salesman Problem

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9771))

Included in the following conference series:

  • 1921 Accesses

Abstract

Traveling salesman problem (TSP) is a renowned NP-hard combinatorial optimization model which widely studied in the operation research community, such as transportation, logistics and industries areas. To address the problem effectively and efficiently, in this paper, a new meta-heuristic method, named hybrid learning artificial bee colony, is proposed based on the simply yet powerful swarm intelligence method, artificial bee colony algorithm. In HLABC, two different learning strategies are adopted in the employed bee phase and the onlooker bee phase. The updating mechanism for food source position is enhanced by employing global best food source. Experimental results on TSP problems with various city sizes indicate the effectiveness of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Laporte, G.: The traveling salesman problem: an overview of exact and approximate algorithms. Eur. J. Oper. Res. 59(2), 231–247 (1992)

    Article  MATH  Google Scholar 

  2. Lawler, E.L.: The traveling salesman problem; a guided tour of combinatorial optimization. Math. Gaz. 58, 535–536 (1985)

    Google Scholar 

  3. Reinelt, G.: A traveling salesman problem library. J. Oper. Res. Soc. 11, 19–21 (1992)

    Google Scholar 

  4. Focacci, F., Lodi, A., Milano, M.: A hybrid exact algorithm for the TSPTW. Inf. J. Comput. 14, 403–417 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ascheuer, N., Fischetti, M., Grötschel, M.: Solving the asymmetric travelling salesman problem with time windows by branch-and-cut. Math. Program. 90, 475–506 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chang, T.S., Wan, Y., Ooi, W.T.: A stochastic dynamic traveling salesman problem with hard time windows. Eur. J. Oper. Res. 198, 748–759 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bellman, R., Roosta, M.: A stochastic travelling salesman problem. Stoch. Anal. Appl. 1, 159–161 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  8. Majumdar, J., Bhunia, A.K.: Genetic algorithm for asymmetric traveling salesman problem with imprecise travel times. J. Comput. Appl. Math. 235, 3063–3078 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Carpeneto, G., Toth, P.: Some new branching and bounding criteria for the asymmetric travelling salesman problem. Manag. Sci. 26, 736–743 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  10. Moon, C., Kim, J., Choi, G., Seo, Y.: An efficient genetic algorithm for the traveling salesman problem with precedence constraints. Eur. J. Oper. Res. 140, 606–617 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bianco, L., Mingozzi, A., Ricciardelli, S.: The traveling salesman problem with cumulative costs. Networks 1990, 81–91 (1992)

    MathSciNet  MATH  Google Scholar 

  12. Choi, I.C., Kim, S.I., Kim, H.S.: A genetic algorithm with a mixed region search for the asymmetric traveling salesman problem. Comput. Oper. Res. 30, 773–786 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Jana, N., Rameshbabu, T.K., Kar, S.: Genetic algorithm for the travelling salesman problem using new crossover and mutation operators. In: Information and Management Sciences–Processings of the Ninth International Conference on Information and Management Sciences (2010)

    Google Scholar 

  14. Brezina Jr., I., Čičková, Z.: Solving the travelling salesman problem using the ant colony optimization. Int. Sci. J. Manag. Inf. Syst. 6, 10–14 (2011)

    Google Scholar 

  15. Manfrin, M., Birattari, M., Stützle, T., Dorigo, M.: Parallel ant colony optimization for the traveling salesman problem. In: Dorigo, M., Gambardella, L.M., Birattari, M., Martinoli, A., Poli, R., Stützle, T. (eds.) ANTS 2006. LNCS, vol. 4150, pp. 224–234. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  16. Mavrovouniotis, M., Yang, S.: Ant colony optimization with immigrants schemes for the dynamic travelling salesman problem with traffic factors. Appl. Soft Comput. 13, 4023–4037 (2013)

    Article  Google Scholar 

  17. Bouzidi, M., Riffi, M.E.: Discrete novel hybrid particle swarm optimization to solve travelling salesman problem. In: The Workshop on Codes, Cryptography and Communication Systems, pp. 17–20 (2014)

    Google Scholar 

  18. Zhong, W.L., Zhang, J., Chen, W.N.: A novel discrete particle swarm optimization to solve traveling salesman problem. In: IEEE Congress on Evolutionary Computation, 2007, CEC 2007, pp. 3283–3287 (2007)

    Google Scholar 

  19. Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (Abc) algorithm. J. Global Optim. 39, 459–471 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Karaboga, D., Gorkemli, B., Ozturk, C., Karaboga, N.: A comprehensive survey: artificial bee colony (Abc) algorithm and applications. Artif. Intell. Rev. 42, 21–57 (2014)

    Article  Google Scholar 

  21. Alqattan, Z.N., Abdullah, R.: A hybrid artificial bee colony algorithm for numerical function optimization. Int. J. Mod. Phys. C 26, 127–132 (2015)

    Article  MathSciNet  Google Scholar 

  22. Taş, D., Gendreau, M., Jabali, O., Laporte, G.: The traveling salesman problem with time-dependent service times. Eur. J. Oper. Res. 248, 372–383 (2015)

    MathSciNet  Google Scholar 

  23. Maity, S., Roy, A., Maiti, M.: An imprecise multi-objective genetic algorithm for uncertain constrained multi-objective solid travelling salesman problem. Expert Syst. Appl. 46, 196–223 (2015)

    Article  Google Scholar 

  24. Zhu, G., Kwong, S.: Gbest-guided artificial bee colony algorithm for numerical function optimization. Appl. Math. Comput. 217, 3166–3173 (2010)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgment

This work was supported by the national natural science foundation of china (71501132, 71571120 and 71371127), and the Natural Science Foundation of Guangdong Province (2016A030310067 and 2015A030313556).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xianghua Chu , Ben Niu or Li Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Hu, G., Chu, X., Niu, B., Li, L., Lin, D., Liu, Y. (2016). An Augmented Artificial Bee Colony with Hybrid Learning for Traveling Salesman Problem. In: Huang, DS., Bevilacqua, V., Premaratne, P. (eds) Intelligent Computing Theories and Application. ICIC 2016. Lecture Notes in Computer Science(), vol 9771. Springer, Cham. https://doi.org/10.1007/978-3-319-42291-6_63

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42291-6_63

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42290-9

  • Online ISBN: 978-3-319-42291-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics