Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

An Fruit Fly Optimization Algorithm with Dimension by Dimension Improvement

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9771))

Included in the following conference series:

  • 1909 Accesses

Abstract

To overcome the shortages of interference phenomena among dimensions, slow convergence rate and low accuracy, a new fruit fly optimization algorithm with dimension by dimension improvement is proposed. In addition, in order to speed up the algorithm convergence rate and avoid algorithm falling into local optimums, a Lévy flight mechanism is introduced to speed up the algorithm convergence rate and enhance the ability to jump out of the local optimum. The simulation experiments show that the proposed algorithm greatly speeds up the convergence rate and significantly improves the qualities of the solutions. Meanwhile, the results also reveal that the proposed algorithm is competitive for continuous function optimization compared with the basic fruit fly optimization algorithm and other algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pan, W.T.: A new fruit fly optimization algorithm: taking the financial distress model as an example. Knowl.-Based Syst. 26, 69–74 (2012)

    Article  Google Scholar 

  2. Pan, W.T.: Fruit fly optimization algorithm. Tsang Hai Book Publishing Co., Taipei, pp. 10–12 (2011)

    Google Scholar 

  3. Han, J.Y., Liu, C.Z.: Fruit fly optimization algorithm with opposition learning policy. Comput Appl. Softw. 4, 157–160 (2014)

    Google Scholar 

  4. Cheng, H., Liu, C.Z.: Mixed fruit fly optimization algorithm based on chaotic mapping. Comput. Eng. 39(5), 218-221 (2013)

    Google Scholar 

  5. Zhong, Y.W., Liu, X., Wang, L.J.: Particle swarm optimisation algorithm with iterative improvement strategy for multi-dimensional function optimisation problems. Int. J. Innov. Comput. Appl. 4(3), 223–232 (2012)

    Article  MathSciNet  Google Scholar 

  6. Wang, R., Zhou, Y.Q.: Flower pollination algorithm with dimension by dimension improvement. Math. Probl. Eng. 32(4), 666–674 (2014)

    Google Scholar 

  7. Wang, L.J., Yin, Y.L., Zhong, Y.W.: A cuckoo search algorithm with dimension by dimension improvement. J. Softw. 24(11), 2687–2698 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Viswanathan, G.M., et al.: Lévy flights search patterns of wandering albatrosses. Nature 381, 13–15 (1996)

    Article  Google Scholar 

  9. Viswanathan, G.M., et al.: Lévy flights in random searchs. Phys. A 282, 1–12 (2000)

    Article  Google Scholar 

  10. Viswanathan, G.M., et al.: Lévy flights search patterns of biological organisms. Phys. A 295, 85–88 (2001)

    Article  MATH  Google Scholar 

  11. Mercadier, N., Guerin, W., Chevrollier, M., et al.: Lévy flights of photons in hot atomic vapours. Nat. Phys. 5(8), 602–605 (2009)

    Article  Google Scholar 

  12. Kennedy, J.: Particle swarm optimization. In: Encyclopedia of Machine Learning, pp. 760–766. Springer US (2011)

    Google Scholar 

  13. Yang, X.S., Deb, S.: Cuckoo search via Lévy flights. World Congress on Nature & Biologically Inspired Computing, 2009, NaBIC 2009, pp. 210–214. IEEE (2009)

    Google Scholar 

  14. He, S., Wu, Q.H., Saunders, J.R.: Group search optimizer: an optimization algorithm inspired by animal searching behavior. IEEE Trans. Evol. Comput. 13(5), 973–990 (2009)

    Article  Google Scholar 

  15. Rashedi, E., Nezamabadi-Pour, H., Saryazdi, S.: GSA: a gravitational search algorithm. Inf. Sci. 179(13), 2232–2248 (2009)

    Article  MATH  Google Scholar 

  16. Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J. Global Optim. 39(3), 459–471 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Li, X., Zhang, J., Yin, M.: Animal migration optimization: an optimization algorithm inspired by animal migration behavior. Neural Comput. Appl. 24(7–8), 1867–1877 (2014)

    Article  Google Scholar 

Download references

Acknowledgement

This work is supported by Educational Commission of Gansu Province of China (No. 2013B-078)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haifeng Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Li, H., Li, H., Wei, K. (2016). An Fruit Fly Optimization Algorithm with Dimension by Dimension Improvement. In: Huang, DS., Bevilacqua, V., Premaratne, P. (eds) Intelligent Computing Theories and Application. ICIC 2016. Lecture Notes in Computer Science(), vol 9771. Springer, Cham. https://doi.org/10.1007/978-3-319-42291-6_68

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42291-6_68

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42290-9

  • Online ISBN: 978-3-319-42291-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics