Abstract
Reordering model is the crucial component in statistical machine translation (SMT), since it plays an important role in the generation of fluent translation results. However, the data sparseness is the key factor that greatly affects the performance of reordering model in SMT. In this paper, we exploit synonymous information to alleviate the data sparseness and take Chinese-Mongolian SMT as example. First, a synonym-based reordering model with Chinese synonym is proposed for Chinese-Mongolian SMT. Then, we flexibly integrate synonym-based reordering model into baseline SMT as additional feature functions. Besides, we present source-side reordering as the pre-processing module to verify the extensibility of our synonym-based reordering model. Experiments on the Chinese-Mongolian dataset show that our synonym-based reordering model achieves significant improvement over baseline SMT system.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Tu, M., Zhou, Y., Zong, C.: Exploring diverse features for statistical machine translation model pruning. IEEE/ACM Trans. Audio Speech Lang Process. 23(11), 1847–1857 (2015)
Farzi, S., Faili, H., Khadivi, S.: A syntactically informed reordering model for statistical machine translation. J. Exp. Theor. Artif. Intell. 27(4), 449–469 (2015)
Tillmann, C.: A unigram orientation model for statistical machine translation. In: HLT-NAACL 2004: Short Papers, pp. 101–104. Association for Computational Linguistics (2004)
Koehn, P., Hoang, H., Birch, A., et al: Moses: open source toolkit for statistical machine translation. In: ACL, pp. 177–180. Association for Computational Linguistics (2007)
Galley, M., Manning, C.D.: A simple and effective hierarchical phrase reordering model. In: EMNLP, pp. 848–856. Association for Computational Linguistics (2008)
Ling, W., Luis, T., Graa, J., Coheur, L., Trancoso, I.: Reordering modeling using weighted alignment matrices. In: ACL-HLT, pp. 450–454. Association for Computational Linguistics (2011)
Yeon-Soo, L.E.E.: Utilizing global syntactic tree features for phrase reordering. IEICE Trans. Inf. Syst. 97(6), 1694–1698 (2014)
Chen, L., Li, M., He, M., Liu, H.: Dependency parsing on source language with reordering information in SMT. In: IALP, pp. 133–136 (2012)
Liang, F., Chen, L., Li, M.: Nasun-urtu: a rule-based source-side reordering on phrase structure subtrees. In: IALP, pp. 173–176 (2011)
Cai, J., Utiyama, M., Sumita, E., et al.: Dependency-based pre-ordering for Chinese-English machine translation. In: ACL, pp. 155–160. Association for Computational Linguistics (2014)
Koehn, P., Och, F.J., Marcu, D.: Statistical phrase-based translation. In: NAACL-HLT, pp. 48–54. Association for Computational Linguistics (2003)
Och, F.J.: Minimum error rate training in statistical machine translation. In: ACL, pp. 160–167. Association for Computational Linguistics (2003)
Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: BLEU: a method for automatic evaluation of machine translation. In: ACL, pp. 311–318. Association for Computational Linguistics (2002)
Zhang, J., Zhai, F., Zong, C.: A substitution-translation-restoration framework for handling unknown words in statistical machine translation. J. Comput. Sci. Technol. 28(5), 907–918 (2013)
Hoang, H., Koehn, P.: Improving mid-range reordering using templates of factors. In: EMNLP, pp. 372–379. Association for Computational Linguistics (2009)
Chen, S.F., Goodman, J.: An empirical study of smoothing techniques for language modeling. In: ACL, pp. 310–318. Association for Computational Linguistics (1996)
Levy, R., Manning, C.: Is it harder to parse Chinese, or the Chinese treebank? In: ACL, pp. 439–446. Association for Computational Linguistics (2003)
Xiong, D., Liu, Q., Lin, S.: Maximum entropy based phrase reordering model for statistical machine translation. In: ACL, pp. 521–528. Association for Computational Linguistics (2006)
He, Z., Meng, Y., Yu, H.: Maximum entropy based phrase reordering for hierarchical phrase-based translation. In: EMNLP, pp. 555–563. Association for Computational Linguistics (2010)
Ling, W., Graça, J., de Matos, D.M., Trancoso, I., Black, A.W.: Discriminative phrase-based lexicalized reordering models using weighted reordering graphs. In: IJCNLP, pp. 47–55. Association for Computational Linguistics (2011)
Yang, Z., Li, M., Zhu, Z., et al.: A maximum entropy based reordering model for Mongolian-Chinese SMT with morphological information. In: IALP, pp.175–178 (2014)
Yang, N., Li, M., Zhang, D., Yu, N.: A ranking-based approach to word reordering for statistical machine translation. In: ACL, pp. 912–920. Association for Computational Linguistics (2012)
Visweswariah, K., Navratil, J., Sorensen, J., et al.: Syntax based reordering with automatically derived rules for improved statistical machine translation. In: ICCL, pp. 1119–1127 (2010)
Acknowledgement
This work is supported by the National Natural Science Foundation of China under No. 61572462, No. 61502445, the Informationization Special Projects of Chinese Academy of Science under No. XXH12504-1-10.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Yang, Z., Li, M., Chen, L., Sun, K. (2016). Synonym-Based Reordering Model for Statistical Machine Translation. In: Huang, DS., Han, K., Hussain, A. (eds) Intelligent Computing Methodologies. ICIC 2016. Lecture Notes in Computer Science(), vol 9773. Springer, Cham. https://doi.org/10.1007/978-3-319-42297-8_35
Download citation
DOI: https://doi.org/10.1007/978-3-319-42297-8_35
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-42296-1
Online ISBN: 978-3-319-42297-8
eBook Packages: Computer ScienceComputer Science (R0)