Abstract
Histogram is one of the fundamental aggregates in crowdsourcing data aggregation. In a crowdsourcing aggregation task, the potential value or importance of each bucket in the histogram may differs, especially when the number of buckets is relatively large but only a few of buckets are of great interests. This is the case weighted histogram aggregation is needed. On the other hand, privacy is a critical issue in crowdsourcing, as data contributed by participants may reveal sensitive information about individuals. In this paper, we study the problem of privacy-preserving weighted histogram aggregation, and propose a new local differential-private mechanism, the bi-parties mechanism, which exploits the weight imbalances among buckets in histogram to minimize weighted error. We provide both theoretical and experimental analyses of the mechanism, specifically, the experimental results demonstrate that our mechanism can averagely reduce \(20\,\%\) of weighted square error of estimated histograms compared to existing approaches (e.g. randomized response mechanism, exponential mechanism).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ács, G., Castelluccia, C.: I have a DREAM! (DiffeRentially privatE smArt Metering). In: Filler, T., Pevný, T., Craver, S., Ker, A. (eds.) IH 2011. LNCS, vol. 6958, pp. 118–132. Springer, Heidelberg (2011)
Bassily, R., Smith, A.: Local, private, efficient protocols for succinct histograms. In: STOC. ACM (2015)
Chan, T.-H.H., Shi, E., Song, D.: Privacy-preserving stream aggregation with fault tolerance. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 200–214. Springer, Heidelberg (2012)
Christin, D.: Privacy in mobile participatory sensing: current trends and future challenges. J. Syst. Softw. 116, 57–68 (2015)
Duchi, J.C., Jordan, M.I., Wainwright, M.J.: Local privacy and statistical minimax rates. In: FOCS. IEEE (2013)
Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006)
Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 265–284. Springer, Heidelberg (2006)
Erlingsson, Ú., Pihur, V., Korolova, A.: Rappor: randomized aggregatable privacy-preserving ordinal response. In: CCS. ACM (2014)
Fang, X., Gao, H., Li, J., Li, Y.: Approximate multiple count in wireless sensor networks. In: 2014 Proceedings IEEE INFOCOM. IEEE (2014)
Hsu, J., Khanna, S., Roth, A.: Distributed private heavy hitters. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part I. LNCS, vol. 7391, pp. 461–472. Springer, Heidelberg (2012)
Kasiviswanathan, S.P., Lee, H.K., Nissim, K., Raskhodnikova, S., Smith, A.: What can we learn privately? SIAM J. Comput. 40(3), 793–826 (2011)
McSherry, F., Talwar, K.: Mechanism design via differential privacy. In: FOCS. IEEE (2007)
Mironov, I., Pandey, O., Reingold, O., Vadhan, S.: Computational differential privacy. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 126–142. Springer, Heidelberg (2009)
Shi, E., Chan, T.H., Rieffel, E., Chow, R., Song, D.: Privacy-preserving aggregation of time-series data. In: NDSS (2011)
Warner, S.L.: Randomized response: a survey technique for eliminating evasive answer bias. J. Am. Stat. Assoc. 60(309), 63–69 (1965)
Won, J., Ma, C.Y., Yau, D.K., Rao, N.S.: Proactive fault-tolerant aggregation protocol for privacy-assured smart metering. In: INFOCOM. IEEE (2014)
Yuen, M.C., King, I., Leung, K.S.: A survey of crowdsourcing systems. In: PASSAT/SocialCom. IEEE (2011)
Acknowledgements
This paper is supported by the National Science Foundation of China under No. U1301256, 61502443, 61472383 and 61472385, Special Project on IoT of China NDRC (2012-2766), the Natural Science Foundation of Anhui Province in China under No. 1408085MKL08, the China Postdoctoral Science Foundation (No. 2015M570545), the Jiangsu Planned Projects for Postdoctoral Research Funds (No. 1501085C).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Wang, S., Huang, L., Wang, P., Deng, H., Xu, H., Yang, W. (2016). Private Weighted Histogram Aggregation in Crowdsourcing. In: Yang, Q., Yu, W., Challal, Y. (eds) Wireless Algorithms, Systems, and Applications. WASA 2016. Lecture Notes in Computer Science(), vol 9798. Springer, Cham. https://doi.org/10.1007/978-3-319-42836-9_23
Download citation
DOI: https://doi.org/10.1007/978-3-319-42836-9_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-42835-2
Online ISBN: 978-3-319-42836-9
eBook Packages: Computer ScienceComputer Science (R0)