Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Private Weighted Histogram Aggregation in Crowdsourcing

  • Conference paper
  • First Online:
Wireless Algorithms, Systems, and Applications (WASA 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9798))

Abstract

Histogram is one of the fundamental aggregates in crowdsourcing data aggregation. In a crowdsourcing aggregation task, the potential value or importance of each bucket in the histogram may differs, especially when the number of buckets is relatively large but only a few of buckets are of great interests. This is the case weighted histogram aggregation is needed. On the other hand, privacy is a critical issue in crowdsourcing, as data contributed by participants may reveal sensitive information about individuals. In this paper, we study the problem of privacy-preserving weighted histogram aggregation, and propose a new local differential-private mechanism, the bi-parties mechanism, which exploits the weight imbalances among buckets in histogram to minimize weighted error. We provide both theoretical and experimental analyses of the mechanism, specifically, the experimental results demonstrate that our mechanism can averagely reduce \(20\,\%\) of weighted square error of estimated histograms compared to existing approaches (e.g. randomized response mechanism, exponential mechanism).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ács, G., Castelluccia, C.: I have a DREAM! (DiffeRentially privatE smArt Metering). In: Filler, T., Pevný, T., Craver, S., Ker, A. (eds.) IH 2011. LNCS, vol. 6958, pp. 118–132. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  2. Bassily, R., Smith, A.: Local, private, efficient protocols for succinct histograms. In: STOC. ACM (2015)

    Google Scholar 

  3. Chan, T.-H.H., Shi, E., Song, D.: Privacy-preserving stream aggregation with fault tolerance. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 200–214. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  4. Christin, D.: Privacy in mobile participatory sensing: current trends and future challenges. J. Syst. Softw. 116, 57–68 (2015)

    Article  Google Scholar 

  5. Duchi, J.C., Jordan, M.I., Wainwright, M.J.: Local privacy and statistical minimax rates. In: FOCS. IEEE (2013)

    Google Scholar 

  6. Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 265–284. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  8. Erlingsson, Ú., Pihur, V., Korolova, A.: Rappor: randomized aggregatable privacy-preserving ordinal response. In: CCS. ACM (2014)

    Google Scholar 

  9. Fang, X., Gao, H., Li, J., Li, Y.: Approximate multiple count in wireless sensor networks. In: 2014 Proceedings IEEE INFOCOM. IEEE (2014)

    Google Scholar 

  10. Hsu, J., Khanna, S., Roth, A.: Distributed private heavy hitters. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part I. LNCS, vol. 7391, pp. 461–472. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  11. Kasiviswanathan, S.P., Lee, H.K., Nissim, K., Raskhodnikova, S., Smith, A.: What can we learn privately? SIAM J. Comput. 40(3), 793–826 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. McSherry, F., Talwar, K.: Mechanism design via differential privacy. In: FOCS. IEEE (2007)

    Google Scholar 

  13. Mironov, I., Pandey, O., Reingold, O., Vadhan, S.: Computational differential privacy. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 126–142. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  14. Shi, E., Chan, T.H., Rieffel, E., Chow, R., Song, D.: Privacy-preserving aggregation of time-series data. In: NDSS (2011)

    Google Scholar 

  15. Warner, S.L.: Randomized response: a survey technique for eliminating evasive answer bias. J. Am. Stat. Assoc. 60(309), 63–69 (1965)

    Article  MATH  Google Scholar 

  16. Won, J., Ma, C.Y., Yau, D.K., Rao, N.S.: Proactive fault-tolerant aggregation protocol for privacy-assured smart metering. In: INFOCOM. IEEE (2014)

    Google Scholar 

  17. Yuen, M.C., King, I., Leung, K.S.: A survey of crowdsourcing systems. In: PASSAT/SocialCom. IEEE (2011)

    Google Scholar 

Download references

Acknowledgements

This paper is supported by the National Science Foundation of China under No. U1301256, 61502443, 61472383 and 61472385, Special Project on IoT of China NDRC (2012-2766), the Natural Science Foundation of Anhui Province in China under No. 1408085MKL08, the China Postdoctoral Science Foundation (No. 2015M570545), the Jiangsu Planned Projects for Postdoctoral Research Funds (No. 1501085C).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liusheng Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Wang, S., Huang, L., Wang, P., Deng, H., Xu, H., Yang, W. (2016). Private Weighted Histogram Aggregation in Crowdsourcing. In: Yang, Q., Yu, W., Challal, Y. (eds) Wireless Algorithms, Systems, and Applications. WASA 2016. Lecture Notes in Computer Science(), vol 9798. Springer, Cham. https://doi.org/10.1007/978-3-319-42836-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42836-9_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42835-2

  • Online ISBN: 978-3-319-42836-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics