Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Detecting Critical Links in Complex Network to Maintain Information Flow/Reachability

  • Conference paper
  • First Online:
PRICAI 2016: Trends in Artificial Intelligence (PRICAI 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9810))

Included in the following conference series:

  • 2759 Accesses

Abstract

We address the problem of efficiently detecting critical links in a large network. Critical links are such links that their deletion exerts substantial effects on the network performance. Here in this paper, we define the performance as being the average node reachability. This problem is computationally very expensive because the number of links is an order of magnitude larger even for a sparse network. We tackle this problem by using bottom-k sketch algorithm and further by employing two new acceleration techniques: marginal-link updating (MLU) and redundant-link skipping (RLS). We tested the effectiveness of the proposed method using two real-world large networks and two synthetic large networks and showed that the new method can compute the performance degradation by link removal about an order of magnitude faster than the baseline method in which bottom-k sketch algorithm is applied directly. Further, we confirmed that the measures easily composed by well known existing centralities, e.g. in/out-degree, betweenness, PageRank, authority/hub, are not able to detect critical links. Those links detected by these measures do not reduce the average reachability at all, i.e. not critical at all.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    \(\mathcal{B}_k(v; G)\) can still be defined when \(|\mathcal{R}(v; G)| < k\). In this case its cardinality is the number of reachable nodes from v.

  2. 2.

    https://snap.stanford.edu/.

  3. 3.

    https://snap.stanford.edu/data/cit-HepPh.html.

  4. 4.

    https://snap.stanford.edu/data/p2p-Gnutella30.html.

References

  1. Albert, R., Jeong, H., Barabási, A.L.: Error and attack tolerance of complex networks. Nature 406, 378–382 (2000)

    Article  Google Scholar 

  2. Boldi, P., Vigna, S.: In-core computation of geometric centralities with hyperball: a hunderd billion nodes and beyond. In: Proceedings of the 2013 IEEE 13th International Conference on Data Mining Workshops (ICDMW 2013), pp. 621–628 (2013)

    Google Scholar 

  3. Borgs, C., Brautbar, M., Chayes, J., Lucier, B.: Maximizing social influence in nearly optimal time. In: Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2014), pp. 946–957 (2014)

    Google Scholar 

  4. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. Comput. Netw. ISDN Syst. 30, 107–117 (1998)

    Article  Google Scholar 

  5. Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata, R., Tomkins, A., Wiener, J.: Graph structure in the web. In: Proceedings of the 9th International World Wide Web Conference, pp. 309–320 (2000)

    Google Scholar 

  6. Callaway, D.S., Newman, M.E.J., Strogatz, S.H., Watts, D.J.: Network robustness and fragility: percolation on random graphs. Phys. Rev. Lett. 85, 5468–5471 (2000)

    Article  Google Scholar 

  7. Chakrabarti, S., Dom, B., Kumar, R., Raghavan, P., Rajagopalan, S., Tomkins, A., Gibson, D., Kleinberg, J.: Mining the web’s link structure. IEEE Comput. 32, 60–67 (1999)

    Article  Google Scholar 

  8. Chen, W., Wang, Y., Yang, S.: Efficient influence maximization in social networks. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2009), pp. 199–208 (2009)

    Google Scholar 

  9. Chen, W., Yuan, Y., Zhang, L.: Scalable influence maximization in social networks under the linear threshold model. In: Proceedings of the 10th IEEE International Conference on Data Mining (ICDM 2010), pp. 88–97 (2010)

    Google Scholar 

  10. Chierichetti, F., Epasto, A., Kumar, R., Lattanzi, S., Mirrokni, V.: Efficient algorithms for public-private social networks. In: Proceedings of the 21st ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2015), pp. 139–148 (2015)

    Google Scholar 

  11. Cohen, E.: Size-estimation framework with applications to transitive closure and reachability. J. Comput. Syst. Sci. 55, 441–453 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cohen, E.: All-distances sketches, revisited: HIP estimators for massive graphs analysis. In: Proceedings of the 33rd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, pp. 88–99 (2015)

    Google Scholar 

  13. Cohen, E., Delling, D., Pajor, T., Werneck, R.F.: Sketch-based influence maximization and computation: scaling up with guarantees. In: Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management, pp. 629–638 (2014)

    Google Scholar 

  14. Freeman, L.: Centrality in social networks: conceptual clarification. Soc. Netw. 1, 215–239 (1979)

    Article  Google Scholar 

  15. Goyal, A., Bonchi, F., Lakshmanan, L.: A data-based approach to social influence maximization. Proc. VLDB Endowment 5(1), 73–84 (2011)

    Article  Google Scholar 

  16. Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence through a social network. In: Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2003), pp. 137–146 (2003)

    Google Scholar 

  17. Kimura, M., Saito, K., Motoda, H.: Blocking links to minimize contamination spread in a social network. ACM Trans. Knowl. Disc. Data 3, 9:1–9:23 (2009)

    Google Scholar 

  18. Kimura, M., Saito, K., Nakano, R.: Extracting influential nodes for information diffusion on a social network. In: Proceedings of the 22nd AAAI Conference on Artificial Intelligence (AAAI 2007), pp. 1371–1376 (2007)

    Google Scholar 

  19. Kimura, M., Saito, K., Ohara, K., Motoda, H.: Efficient analysis of node influence based on sir model over huge complex networks. In: Proceedings of the 2014 International Conference on Data Science and Advanced Analytics (DSAA 2014), pp. 216–222 (2014)

    Google Scholar 

  20. Kimura, M., Saito, K., Ohara, K., Motoda, H.: Speeding-up node influence computation for huge social networks. Int. J. Data Sci. Anal. 1, 1–14 (2016)

    Article  Google Scholar 

  21. Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., VanBriesen, J., Glance, N.: Cost-effective outbreak detection in networks. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2007), pp. 420–429 (2007)

    Google Scholar 

  22. Newman, M.E.J., Forrest, S., Balthrop, J.: Email networks and the spread of computer viruses. Phys. Rev. E 66, 035101 (2002)

    Article  Google Scholar 

  23. Newman, M.: The structure and function of complex networks. SIAM Rev. 45, 167–256 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ohara, K., Saito, K., Kimura, M., Motoda, H.: Resampling-based framework for estimating node centrality of large social network. In: Džeroski, S., Panov, P., Kocev, D., Todorovski, L. (eds.) DS 2014. LNCS, vol. 8777, pp. 228–239. Springer, Heidelberg (2014)

    Google Scholar 

  25. Saito, K., Kimura, M., Ohara, K., Motoda, H.: Super mediator - a new centrality measure of node importance for information diffusion over social network. Inf. Sci. 329, 985–1000 (2016)

    Article  Google Scholar 

  26. Song, G., Zhou, X., Wang, Y., Xie, K.: Influence maximization on large-scale mobile social network: a divide-and-conquer method. IEEE Trans. Parallel Distrib. Syst. 26, 1379–1392 (2015)

    Article  Google Scholar 

  27. Watts, D.: A simple model of global cascades on random networks. Proc. Natl. Acad. Sci. USA. 99, 5766–5771 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhou, C., Zhang, P., Zang, W., Guo, L.: On the upper bounds of spread for greedy algorithms in social network influence maximization. IEEE Trans. Knowl. Data Eng. 27, 2770–2783 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This material is based upon work supported by the Air Force Office of Scientific Research, Asian Office of Aerospace Research and Development (AOARD) under award number FA2386-16-1-4032, and JSPS Grant-in-Aid for Scientific Research (C) (No. 26330261).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazumi Saito .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Saito, K., Kimura, M., Ohara, K., Motoda, H. (2016). Detecting Critical Links in Complex Network to Maintain Information Flow/Reachability. In: Booth, R., Zhang, ML. (eds) PRICAI 2016: Trends in Artificial Intelligence. PRICAI 2016. Lecture Notes in Computer Science(), vol 9810. Springer, Cham. https://doi.org/10.1007/978-3-319-42911-3_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42911-3_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42910-6

  • Online ISBN: 978-3-319-42911-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics