Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Electromagnetic Guided In-Situ Laser Fenestration of Endovascular Stent-Graft: Endovascular Tools Sensorization Strategy and Preliminary Laser Testing

  • Conference paper
  • First Online:
Medical Imaging and Augmented Reality (MIAR 2016)

Abstract

The in-situ endograft fenestration, a possible surgical option for the minimally invasive treatment of aneurysms with unfavorable anatomy, is today limited by difficulties in targeting the fenestration site and by the lack of a safe method to perforate the graft. In this work we suggest the use of: a 3D electromagnetic (EM) navigator, to accurately guide the endovascular instruments to the target, and a laser system, to selectively perforate the graft. More particularly we propose to integrate a laser fiber into a sensorized guidewire and we describe an EM sensorization strategy to accurately guide the laser tool. Finally we preliminary explore different laser irradiation conditions to achieve a successful endograft fenestration and we verify that the heating generated by the laser doesn’t damage the EM coils.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dillavou, E.D., Muluk, S.C., Rhee, R.Y., Tzeng, E., Woody, J.D., Gupta, N., Makaroun, M.S.: Does hostile neck anatomy preclude successful endovascular aortic aneurysm repair? J. Vasc. Surg. 38, 657–663 (2003)

    Article  Google Scholar 

  2. Choke, E., Munneke, G., Morgan, R., Belli, A.M., Loftus, I., McFarland, R., Loosemore, T., Thompson, M.M.: Outcomes of endovascular abdominal aortic aneurysm repair in patients with hostile neck anatomy. Cardiovasc. Intervent. Radiol. 29, 975–980 (2006)

    Article  Google Scholar 

  3. Cameron, J.L., Cameron, A.M.: Current Surgical Therapy. Elsevier Health Sciences, Amsterdam (2013)

    Google Scholar 

  4. Bertoni, H.G., Girela, G., Peirano, M., Leguizamón, J.H., Ludueña, S., Barone, H.: Endovascular exclusion of an abdominal aortic aneurysm with a fenestrated balloon-expandable stent-graft. Revista argentina de cardiología 76, 403–406 (2008)

    Google Scholar 

  5. Verhoeven, E.L., Zeebregts, C.J., Kapma, M.R., Tielliu, I.F., Prins, T.R., van den Dungen, J.J.: Fenestrated and branched endovascular techniques for thoraco-abdominal aneurysm repair. J Cardiovasc. Surg. (Torino) 46, 131–140 (2005)

    Google Scholar 

  6. Greenberg, R.K., Qureshi, M.: Fenestrated and branched devices in the pipeline. J. Vasc. Surg. 52, 15S–21S (2010). Official publication, the Society for Vascular Surgery [and] International Society for Cardiovascular Surgery, North American Chapter

    Article  Google Scholar 

  7. Health Quality Ontario: Fenestrated endovascular grafts for the repair of juxtarenal aortic aneurysms: an evidence-based analysis. Ont. Health Technol. Assess. Ser. 9, 1–51 (2009)

    Google Scholar 

  8. Oderich, G.S., Ricotta 2nd, J.J.: Modified fenestrated stent grafts: device design, modifications, implantation, and current applications. Perspect. Vasc. Surg. Endovasc. Ther. 21, 157–167 (2009)

    Article  Google Scholar 

  9. McWilliams, R.G., Fearn, S.J., Harris, P.L., Hartley, D., Semmens, J.B., Lawrence-Brown, M.M.: Retrograde fenestration of endoluminal grafts from target vessels: feasibility, technique, and potential usage. J. Endovasc. Ther. 10, 946–952 (2003)

    Article  Google Scholar 

  10. Riga, C.V., Bicknell, C.D., Wallace, D., Hamady, M., Cheshire, N.: Robot-assisted antegrade in-situ fenestrated stent grafting. Cardiovasc. Intervent. Radiol. 32, 522–524 (2009)

    Article  Google Scholar 

  11. Condino, S., Ferrari, V., Freschi, C., Alberti, A., Berchiolli, R., Mosca, F., Ferrari, M.: Electromagnetic navigation platform for endovascular surgery: how to develop sensorized catheters and guidewires. Int. J. Med. Robot. + Comput. Assist. Surg. MRCAS 8, 300–310 (2012)

    Article  Google Scholar 

  12. Condino, S., Calabro, E.M., Alberti, A., Parrini, S., Cioni, R., Berchiolli, R.N., Gesi, M., Ferrari, V., Ferrari, M.: Simultaneous tracking of catheters and guidewires: comparison to standard fluoroscopic guidance for arterial cannulation. Eur. J. Vasc. Endovasc. Surg. Off. J. Eur. Soc. Vasc. Surg. 47, 53–60 (2014)

    Article  Google Scholar 

  13. Turini, G., Condino, S., Postorino, M., Ferrari, V., Ferrari, M.: Improving endovascular intraoperative navigation with real-time skeleton-based deformation of virtual vascular structures. In: De Paolis, T.L., Mongelli, A. (eds.) AVR 2016. LNCS, vol. 9769, pp. 82–91. Springer International Publishing, Switzerland (2016)

    Chapter  Google Scholar 

  14. Pennington, N., Soames, R.W.: The anterior visceral branches of the abdominal aorta and their relationship to the renal arteries. Surg. Radiol. Anat. 27, 395–403 (2005)

    Article  Google Scholar 

  15. Zhang, L., Parrini, S., Freschi, C., Ferrari, V., Condino, S., Ferrari, M., Caramella, D.: 3D ultrasound centerline tracking of abdominal vessels for endovascular navigation. Int. J. Comput. Assist. Radiol. Surg. 9, 127–135 (2014)

    Article  Google Scholar 

  16. Murphy, E.H., Dimaio, J.M., Dean, W., Jessen, M.E., Arko, F.R.: Endovascular repair of acute traumatic thoracic aortic transection with laser-assisted in-situ fenestration of a stent-graft covering the left subclavian artery. J. Endovasc. Ther. 16, 457–463 (2009). An official Journal of the International Society of Endovascular Specialists

    Article  Google Scholar 

  17. Ahanchi, S.S., Almaroof, B.H., Stout, C.L., Panneton, J.M.: In situ laser fenestration and stenting during TEVAR: a new approach to subclavian artery revascularization. J. Vasc. Surg. 53, 552–553 (2011)

    Article  Google Scholar 

  18. Ahanchi, S.S., Almaroof, B., Stout, C.L., Panneton, J.M.: In situ laser fenestration for revascularization of the left subclavian artery during emergent thoracic endovascular aortic repair. J. Endovasc. Ther. 19, 226–230 (2012). An official Journal of the International Society of Endovascular Specialists

    Article  Google Scholar 

  19. Redlinger Jr., R.E., Ahanchi, S.S., Panneton, J.M.: In situ laser fenestration during emergent thoracic endovascular aortic repair is an effective method for left subclavian artery revascularization. J. Vasc. Surg. 58, 1171–1177 (2013)

    Article  Google Scholar 

  20. Topaz, O.: Lasers in Cardiovascular Interventions. Springer, London (2015)

    Book  Google Scholar 

  21. Saari, P., Manninen, H.: Fenestration of aortic stent grafts-in vitro tests using various device combinations. J. Vasc. Interv. Radiol. 22, 89–94 (2011)

    Article  Google Scholar 

  22. Zinn, K., Welch, J., Root, H.: Guidewire tipped laser fiber. Google Patents (2009)

    Google Scholar 

  23. Arslan, B., Turba, U.C., Sabri, S., Angle, J.F., Matsumoto, A.H.: Current status of percutaneous endografting. Semin. Intervent. Radiol. 26, 67–73 (2009)

    Article  Google Scholar 

  24. Song, S., Li, Z., Yu, H.Y., Ren, H.L.: Electromagnetic positioning for tip tracking and shape sensing of flexible robots. IEEE Sens. J. 15, 4565–4575 (2015)

    Article  Google Scholar 

  25. Maria Viglialoro, R., Condino, S., Gesi, M., Ferrari, M., Ferrari, V.: Augmented reality simulator for laparoscopic cholecystectomy training. In: De Paolis, L.T., Mongelli, A. (eds.) AVR 2014. LNCS, vol. 8853, pp. 428–433. Springer, Heidelberg (2014)

    Google Scholar 

  26. Ferrari, V., Viglialoro, R.M., Nicoli, P., Cutolo, F., Condino, S., Carbone, M., Siesto, M., Ferrari, M.: Augmented reality visualization of deformable tubular structures for surgical simulation. Int. J. Med. Robot. Comput. Assist. Surg. 12, 231–240 (2016)

    Article  Google Scholar 

  27. Viglialoro, R., Condino, S., Gesi, M., Ferrari, M., Ferrari, V., Freschi, C., Cutolo, F.: AR visualization of ``Synthetic Calot’s Triangle” for training in cholecystectomy. In: 12th IASTED International Conference on Biomedical Engineering, BioMed 2016 (2016)

    Google Scholar 

Download references

Acknowledgments

This research has been supported by the scientific project “Electromagnetic guided in-situ laser fenestration of endovascular endoprosthesis” funded by the Italian Ministry of Health and Regione Toscana through the call “Ricerca Finalizzata 2011–2012”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Condino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Condino, S. et al. (2016). Electromagnetic Guided In-Situ Laser Fenestration of Endovascular Stent-Graft: Endovascular Tools Sensorization Strategy and Preliminary Laser Testing. In: Zheng, G., Liao, H., Jannin, P., Cattin, P., Lee, SL. (eds) Medical Imaging and Augmented Reality. MIAR 2016. Lecture Notes in Computer Science(), vol 9805. Springer, Cham. https://doi.org/10.1007/978-3-319-43775-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43775-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43774-3

  • Online ISBN: 978-3-319-43775-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics