Abstract
The in-situ endograft fenestration, a possible surgical option for the minimally invasive treatment of aneurysms with unfavorable anatomy, is today limited by difficulties in targeting the fenestration site and by the lack of a safe method to perforate the graft. In this work we suggest the use of: a 3D electromagnetic (EM) navigator, to accurately guide the endovascular instruments to the target, and a laser system, to selectively perforate the graft. More particularly we propose to integrate a laser fiber into a sensorized guidewire and we describe an EM sensorization strategy to accurately guide the laser tool. Finally we preliminary explore different laser irradiation conditions to achieve a successful endograft fenestration and we verify that the heating generated by the laser doesn’t damage the EM coils.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Dillavou, E.D., Muluk, S.C., Rhee, R.Y., Tzeng, E., Woody, J.D., Gupta, N., Makaroun, M.S.: Does hostile neck anatomy preclude successful endovascular aortic aneurysm repair? J. Vasc. Surg. 38, 657–663 (2003)
Choke, E., Munneke, G., Morgan, R., Belli, A.M., Loftus, I., McFarland, R., Loosemore, T., Thompson, M.M.: Outcomes of endovascular abdominal aortic aneurysm repair in patients with hostile neck anatomy. Cardiovasc. Intervent. Radiol. 29, 975–980 (2006)
Cameron, J.L., Cameron, A.M.: Current Surgical Therapy. Elsevier Health Sciences, Amsterdam (2013)
Bertoni, H.G., Girela, G., Peirano, M., LeguizamĂłn, J.H., Ludueña, S., Barone, H.: Endovascular exclusion of an abdominal aortic aneurysm with a fenestrated balloon-expandable stent-graft. Revista argentina de cardiologĂa 76, 403–406 (2008)
Verhoeven, E.L., Zeebregts, C.J., Kapma, M.R., Tielliu, I.F., Prins, T.R., van den Dungen, J.J.: Fenestrated and branched endovascular techniques for thoraco-abdominal aneurysm repair. J Cardiovasc. Surg. (Torino) 46, 131–140 (2005)
Greenberg, R.K., Qureshi, M.: Fenestrated and branched devices in the pipeline. J. Vasc. Surg. 52, 15S–21S (2010). Official publication, the Society for Vascular Surgery [and] International Society for Cardiovascular Surgery, North American Chapter
Health Quality Ontario: Fenestrated endovascular grafts for the repair of juxtarenal aortic aneurysms: an evidence-based analysis. Ont. Health Technol. Assess. Ser. 9, 1–51 (2009)
Oderich, G.S., Ricotta 2nd, J.J.: Modified fenestrated stent grafts: device design, modifications, implantation, and current applications. Perspect. Vasc. Surg. Endovasc. Ther. 21, 157–167 (2009)
McWilliams, R.G., Fearn, S.J., Harris, P.L., Hartley, D., Semmens, J.B., Lawrence-Brown, M.M.: Retrograde fenestration of endoluminal grafts from target vessels: feasibility, technique, and potential usage. J. Endovasc. Ther. 10, 946–952 (2003)
Riga, C.V., Bicknell, C.D., Wallace, D., Hamady, M., Cheshire, N.: Robot-assisted antegrade in-situ fenestrated stent grafting. Cardiovasc. Intervent. Radiol. 32, 522–524 (2009)
Condino, S., Ferrari, V., Freschi, C., Alberti, A., Berchiolli, R., Mosca, F., Ferrari, M.: Electromagnetic navigation platform for endovascular surgery: how to develop sensorized catheters and guidewires. Int. J. Med. Robot. + Comput. Assist. Surg. MRCAS 8, 300–310 (2012)
Condino, S., Calabro, E.M., Alberti, A., Parrini, S., Cioni, R., Berchiolli, R.N., Gesi, M., Ferrari, V., Ferrari, M.: Simultaneous tracking of catheters and guidewires: comparison to standard fluoroscopic guidance for arterial cannulation. Eur. J. Vasc. Endovasc. Surg. Off. J. Eur. Soc. Vasc. Surg. 47, 53–60 (2014)
Turini, G., Condino, S., Postorino, M., Ferrari, V., Ferrari, M.: Improving endovascular intraoperative navigation with real-time skeleton-based deformation of virtual vascular structures. In: De Paolis, T.L., Mongelli, A. (eds.) AVR 2016. LNCS, vol. 9769, pp. 82–91. Springer International Publishing, Switzerland (2016)
Pennington, N., Soames, R.W.: The anterior visceral branches of the abdominal aorta and their relationship to the renal arteries. Surg. Radiol. Anat. 27, 395–403 (2005)
Zhang, L., Parrini, S., Freschi, C., Ferrari, V., Condino, S., Ferrari, M., Caramella, D.: 3D ultrasound centerline tracking of abdominal vessels for endovascular navigation. Int. J. Comput. Assist. Radiol. Surg. 9, 127–135 (2014)
Murphy, E.H., Dimaio, J.M., Dean, W., Jessen, M.E., Arko, F.R.: Endovascular repair of acute traumatic thoracic aortic transection with laser-assisted in-situ fenestration of a stent-graft covering the left subclavian artery. J. Endovasc. Ther. 16, 457–463 (2009). An official Journal of the International Society of Endovascular Specialists
Ahanchi, S.S., Almaroof, B.H., Stout, C.L., Panneton, J.M.: In situ laser fenestration and stenting during TEVAR: a new approach to subclavian artery revascularization. J. Vasc. Surg. 53, 552–553 (2011)
Ahanchi, S.S., Almaroof, B., Stout, C.L., Panneton, J.M.: In situ laser fenestration for revascularization of the left subclavian artery during emergent thoracic endovascular aortic repair. J. Endovasc. Ther. 19, 226–230 (2012). An official Journal of the International Society of Endovascular Specialists
Redlinger Jr., R.E., Ahanchi, S.S., Panneton, J.M.: In situ laser fenestration during emergent thoracic endovascular aortic repair is an effective method for left subclavian artery revascularization. J. Vasc. Surg. 58, 1171–1177 (2013)
Topaz, O.: Lasers in Cardiovascular Interventions. Springer, London (2015)
Saari, P., Manninen, H.: Fenestration of aortic stent grafts-in vitro tests using various device combinations. J. Vasc. Interv. Radiol. 22, 89–94 (2011)
Zinn, K., Welch, J., Root, H.: Guidewire tipped laser fiber. Google Patents (2009)
Arslan, B., Turba, U.C., Sabri, S., Angle, J.F., Matsumoto, A.H.: Current status of percutaneous endografting. Semin. Intervent. Radiol. 26, 67–73 (2009)
Song, S., Li, Z., Yu, H.Y., Ren, H.L.: Electromagnetic positioning for tip tracking and shape sensing of flexible robots. IEEE Sens. J. 15, 4565–4575 (2015)
Maria Viglialoro, R., Condino, S., Gesi, M., Ferrari, M., Ferrari, V.: Augmented reality simulator for laparoscopic cholecystectomy training. In: De Paolis, L.T., Mongelli, A. (eds.) AVR 2014. LNCS, vol. 8853, pp. 428–433. Springer, Heidelberg (2014)
Ferrari, V., Viglialoro, R.M., Nicoli, P., Cutolo, F., Condino, S., Carbone, M., Siesto, M., Ferrari, M.: Augmented reality visualization of deformable tubular structures for surgical simulation. Int. J. Med. Robot. Comput. Assist. Surg. 12, 231–240 (2016)
Viglialoro, R., Condino, S., Gesi, M., Ferrari, M., Ferrari, V., Freschi, C., Cutolo, F.: AR visualization of ``Synthetic Calot’s Triangle” for training in cholecystectomy. In: 12th IASTED International Conference on Biomedical Engineering, BioMed 2016 (2016)
Acknowledgments
This research has been supported by the scientific project “Electromagnetic guided in-situ laser fenestration of endovascular endoprosthesis” funded by the Italian Ministry of Health and Regione Toscana through the call “Ricerca Finalizzata 2011–2012”.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Condino, S. et al. (2016). Electromagnetic Guided In-Situ Laser Fenestration of Endovascular Stent-Graft: Endovascular Tools Sensorization Strategy and Preliminary Laser Testing. In: Zheng, G., Liao, H., Jannin, P., Cattin, P., Lee, SL. (eds) Medical Imaging and Augmented Reality. MIAR 2016. Lecture Notes in Computer Science(), vol 9805. Springer, Cham. https://doi.org/10.1007/978-3-319-43775-0_7
Download citation
DOI: https://doi.org/10.1007/978-3-319-43775-0_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-43774-3
Online ISBN: 978-3-319-43775-0
eBook Packages: Computer ScienceComputer Science (R0)