Abstract
Premature convergence is one of the most important recurrent drawbacks of Evolutionary Algorithms and other metaheuristics. As a result, several methods to alleviate this problem have been devised. One alternative is to explicitly control the diversity of the population. In this chapter, a recently proposed survivor selection strategy is incorporated into a memetic algorithm and analyzed using three different combinatorial optimization problems. This strategy is based on adopting multi-objective concepts for solving single-objective problems by considering the contribution to diversity as an explicit objective. Additionally, it incorporates the principle of adapting the balance between exploration and exploitation to the different stages of the optimization by taking into account the stopping criterion and elapsed time. These new methods provide important benefits when compared to more mature methods that rely on different principles to delay convergence of the population. Additionally, new best-known solutions are generated for several instances of the problems, thus providing proofs of the considerable benefits and robustness yielded by the schemes that incorporate this novel replacement strategy.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The original website (http://www.sigevo.org/gecco-2008/competitions.html) is not being maintained. We have created a new website from which the evaluator and instances can be downloaded (http://2dpp.cimat.mx).
- 2.
The Sudoku puzzles are available at http://www.cimat.mx/~carlos.segura/Sudoku/SudokuPuzzles.tar.gz.
References
Aardal, K.I., Hoesel, S.P.M.V., Koster, A.M.C.A., Mannino, C., Sassano, A.: Models and solution techniques for frequency assignment problems. Ann. Oper. Res. 153(1), 79–129 (2007)
Alba, E.: Parallel Metaheuristics: A New Class of Algorithms. Wiley Series on Parallel and Distributed Computing. Wiley-Interscience, Hoboken (2005)
Ballester, P.J., Carter, J.N.: An effective real-parameter genetic algorithm with parent centric normal crossover for multimodal optimisation. In: Deb, K. (ed.) Genetic and Evolutionary Computation (GECCO 2004). Lecture Notes in Computer Science, vol. 3102, pp. 901–913. Springer, Berlin Heidelberg (2004)
Blickle, T., Thiele, L.: A comparison of selection schemes used in evolutionary algorithms. Evol. Comput. 4(4), 361–394 (1996)
Borenstein, Y., Moraglio, A.: Theory and Principled Methods for the Design of Metaheuristics. Springer, Berlin (2014)
Bui, L.T., Abbass, H.A., Branke, J.: Multiobjective optimization for dynamic environments. In: 2005 IEEE Congress on Evolutionary Computation CEC’05, vol. 3, pp. 2349–2356 (2005)
Clementis, L.: Advantage of parallel simulated annealing optimization by solving sudoku puzzle. In: Sink, P., Hartono, P., Virkov, M., Vak, J., Jaka, R. (eds.) Emergent Trends in Robotics and Intelligent Systems. Advances in Intelligent Systems and Computing, vol. 316, pp. 207–213. Springer, Heidelberg (2015)
Coello, C.A.C., Lamont, G.B., Veldhuizen, D.A.V.: Evolutionary Algorithms for Solving Multi-objective Problems. Springer, New York (2006)
Cotta, C., van Hemert, J.I. (eds.): Recent advances in evolutionary computation for combinatorial optimization. Studies in Computational Intelligence, vol. 153. Springer, Heidelberg (2008)
Črepinšek, M., Liu, S.H., Mernik, M.: Exploration and exploitation in evolutionary algorithms: a survey. ACM Comput. Surv. 45(3), 35:1–35:33 (2013)
Das, K.N., Bhatia, S., Puri, S., Deep, K.: A retrievable GA for solving sudoku puzzles. Technical report, Department of Electrical Engeneering, Indian Institute of Technology Roorkee (2007)
Eiben, A., Smith, J.: Introduction to Evolutionary Computing. Natural Computing Series. Springer, Heidelberg (2003)
Eiben, A.E., Schippers, C.A.: On evolutionary exploration and exploitation. Fundamenta Informaticae 35(1–4), 35–50 (1998)
Harik, G.R.: Finding multimodal solutions using restricted tournament selection. In: Proceedings of the 6th International Conference on Genetic Algorithms, pp. 24–31. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (1995)
Hong, T.P., Tsai, M.W., Liu, T.K.: Two-dimentional encoding schema and genetic operators. In: Proceedings of the 2006 Joint Conference on Information Sciences (JCIS 2006). Atlantis Press (2006)
Ishibuchi, H., Yoshida, T., Murata, T.: Balance between genetic search and local search in memetic algorithms for multiobjective permutation flowshop scheduling. IEEE Trans. Evol. Comput. 7(2), 204–223 (2003)
Jilg, J., Carter, J.: Sudoku evolution. In: 2009 IEEE International Games Innovations Conference, pp. 173–185 (2009)
Kim, J., Moon, B.R.: A hybrid genetic algorithm for a variant of two-dimensional packing problem. In: Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation, GECCO ’09, pp. 287–292. ACM, New York, NY, USA (2009)
Knowles, J., Watson, R.A., Corne, D.: Reducing local optima in single-objective problems by multi-objectivization. In: Proceedings of the First International Conference on Evolutionary Multi-Criterion Optimization, EMO ’01, pp. 269–283. Springer, London, UK (2001)
Koumousis, V., Katsaras, C.: A saw-tooth genetic algorithm combining the effects of variable population size and reinitialization to enhance performance. IEEE Trans. Evol. Comput. 10(1), 19–28 (2006)
Kuurne, A.: On GSM mobile measurement based interference matrix generation. In: IEEE 55th Vehicular Technology Conference (VTC Spring 2002), vol. 4, pp. 1965–1969 (2002)
Lai, X., Hao, J.K.: Path relinking for the fixed spectrum frequency assignment problem. Expert Syst Appl 42(10), 4755–4767 (2015)
León, C., Miranda, G., Segura, C.: A memetic algorithm and a parallel hyperheuristic island-based model for a 2D packing problem. In: Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation, GECCO ’09, pp. 1371–1378. ACM, New York, NY, USA (2009)
León, C., Miranda, G., Segura, C.: METCO: A parallel plugin-based framework for multi-objective optimization. Int. J. Artif. Intell. Tools 18(4), 569–588 (2009)
Lim, T.Y., Al-Betar, M., Khader, A.: Monogamous pair bonding in genetic algorithm. In: 2015 IEEE Congress on Evolutionary Computation (CEC’15), pp. 15–22 (2015)
Lobo, F.G., Lima, C.F., Michalewicz, Z. (eds.): Parameter Setting in Evolutionary Algorithms. Studies in Computational Intelligence, vol. 54. Springer, Heidelberg (2007)
Lozano, M., Herrera, F., Cano, J.R.: Replacement strategies to preserve useful diversity in steady-state genetic algorithms. Inf. Sci. 178(23), 4421–4433 (2008)
Luna, F., Estébanez, C., León, C., Chaves-González, J.M., Alba, E., Aler, R., Segura, C., Vega-Rodríguez, M.A., Nebro, A.J., Valls, J.M., Miranda, G., Gómez-Pulido, J.A.: Metaheuristics for solving a real-world frequency assignment problem in GSM networks. In: Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation, GECCO ’08, pp. 1579–1586. ACM, New York, NY, USA (2008)
Luna, F., Estébanez, C., León, C., Chaves-González, J.M., Nebro, A.J., Aler, R., Segura, C., Vega-Rodríguez, M.A., Alba, E., Valls, J.M., Miranda, G., Gómez-Pulido, J.A.: Optimization algorithms for large-scale real-world instances of the frequency assignment problem. Soft Comput. 15(5), 975–990 (2010)
Mahfoud, S.W.: Crowding and preselection revisited. In: Männer, R., Manderick, B. (eds.) Parallel Problem Solving from Nature 2, pp. 27–36. North-Holland, Amsterdam (1992)
Mahfoud, S.W.: Niching methods for genetic algorithms. Technical report, University of Illinois at Urbana Champaign (1995). IlliGAL Report No. 95001
Mantere, T.: Improved ant colony genetic algorithm hybrid for sudoku solving. In: Third World Congress on Information and Communication Technologies (WICT), pp. 274–279 (2013)
Mantere, T., Koljonen, J.: Solving and rating sudoku puzzles with genetic algorithms. In: Proceedings of the 12th Finnish Artificial Intelligence Conference (STeP 2006), pp. 86–92. Finnish Artificial Intelligence Society, Espoo, Finland (2006)
Mengshoel, O.J., Goldberg, D.E.: Probabilistic crowding: Deterministic crowding with probabilistic replacement. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-99), pp. 409–416, Orlando, FL (1999)
Mengshoel, O.J., Galán, S.F., de Dios, A.: Adaptive generalized crowding for genetic algorithms. Inf. Sci. 258, 140–159 (2014)
Montemanni, R., Moon, J., Smith, D.: An improved tabu search algorithm for the fixed-spectrum frequency-assignment problem. IEEE Trans. Veh. Technol. 52(4), 891–901 (2003)
Moraglio, A., Togelius, J.: Geometric particle swarm optimization for the sudoku puzzle. Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation. GECCO ’07, pp. 118–125. ACM, New York, NY, USA (2007)
Moraglio, A., Togelius, J., Lucas, S.: Product geometric crossover for the sudoku puzzle. In: IEEE Congress on Evolutionary Computation (CEC’06), pp. 470–476 (2006)
Mouret, J.B.: Novelty-based multiobjectivization. In: Doncieux, S., Bredéche, N., Mouret, J.B. (eds.) New Horizons in Evolutionary Robotics. Studies in Computational Intelligence, vol. 341, pp. 139–154. Springer, Berlin (2011)
Pandey, H.M., Chaudhary, A., Mehrotra, D.: A comparative review of approaches to prevent premature convergence in GA. Appl. Soft Comput. 24, 1047–1077 (2014)
Petrowski, A.: A clearing procedure as a niching method for genetic algorithms. In: Proceedings of IEEE International Conference on Evolutionary Computation (CEC’96), pp. 798–803 (1996)
Qin, A.K., Huang, V.L., Suganthan, P.: Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans. Evol. Comput. 13(2), 398–417 (2009)
Sato, Y., Inoue, H.: Solving sudoku with genetic operations that preserve building blocks. In: 2010 IEEE Symposium on Computational Intelligence and Games (CIG), pp. 23–29 (2010)
Segredo, E., Segura, C., León, C.: Memetic algorithms and hyperheuristics applied to a multiobjectivised two-dimensional packing problem. J. Glob. Optim. 58(4), 769–794 (2014)
Segura, C., Miranda, G., León, C.: Parallel hyperheuristics for the frequency assignment problem. Memet. Comput. 3(1), 33–49 (2010)
Segura, C., Segredo, E., León, C.: Parallel island-based multiobjectivised memetic algorithms for a 2D packing problem. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, GECCO ’11, pp. 1611–1618. ACM, New York, NY, USA (2011)
Segura, C., Segredo, E., León, C.: Scalability and robustness of parallel hyperheuristics applied to a multiobjectivised frequency assignment problem. Soft Comput. 17(6), 1077–1093 (2012)
Segura, C., Coello Coello, C.A., Miranda, G., León, C.: Using multi-objective evolutionary algorithms for single-objective optimization. 4OR 11(3), 201–228 (2013)
Segura, C., Coello, C., Segredo, E., Miranda, G., Leon, C.: Improving the diversity preservation of multi-objective approaches used for single-objective optimization. In: 2013 IEEE Congress on Evolutionary Computation (CEC), pp. 3198–3205 (2013)
Segura, C.: Botello Rionda, S., Hernández Aguirre, A., Valdez Peña, S.I.: A novel diversity-based evolutionary algorithm for the traveling salesman problem. In: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, GECCO’15, pp. 489–496. ACM, New York, NY, USA (2015)
Segura, C., Coello, C.A.C., Miranda, G., León, C.: Using multi-objective evolutionary algorithms for single-objective constrained and unconstrained optimization. Ann. Oper. Res. 240(1), 217–250 (2016)
Segura, C., Coello Coello, C., Segredo, E., Aguirre, A.: A novel diversity-based replacement strategy for evolutionary algorithms. IEEE Trans. Cybern. 1–14 (2016 in Press)
Storn, R., Price, K.: Differential evolution - A simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)
Vidal, T., Crainic, T.G., Gendreau, M., Prins, C.: A hybrid genetic algorithm with adaptive diversity management for a large class of vehicle routing problems with time-windows. Comput. Oper. Res. 40(1), 475–489 (2013)
Wang, Z., Yasuda, T., Ohkura, K.: An evolutionary approach to sudoku puzzles with filtered mutations. In: 2015 IEEE Congress on Evolutionary Computation (CEC), pp. 1732–1737 (2015)
Yato, T., Seta, T.: Complexity and completeness of finding another solution and its application to puzzles. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E86-A(5), 1052–1060 (2003)
http://www.websudoku.com/. Accessed 21 Jan 2016
http://www.sudoku-solutions.com/. Accessed 21 Jan 2016
http://www.sudokuwiki.org/Arto_Inkala_Sudoku. Accessed 21 Jan 2016
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Segura, C., Aguirre, A.H., Peña, S.I.V., Rionda, S.B. (2017). The Importance of Proper Diversity Management in Evolutionary Algorithms for Combinatorial Optimization. In: Schütze, O., Trujillo, L., Legrand, P., Maldonado, Y. (eds) NEO 2015. Studies in Computational Intelligence, vol 663. Springer, Cham. https://doi.org/10.1007/978-3-319-44003-3_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-44003-3_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-44002-6
Online ISBN: 978-3-319-44003-3
eBook Packages: EngineeringEngineering (R0)