Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

High Integrated Information in Complex Networks Near Criticality

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2016 (ICANN 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9886))

Included in the following conference series:

Abstract

Integrated information has recently been proposed as an information-theoretic measure of a network’s dynamical complexity. It aims to capture the amount of information generated by a network as a whole over and above that generated by the sum of its parts when the network transitions from one dynamical state to another. Several formulations of this measure have been proposed, with numerical schemes for computing network complexity. In this paper, we approach the problem analytically. We compute the integrated information of weighted networks with stochastic dynamics. Our formulation makes use of the Kullback-Leibler divergence between the multi-variate distribution on the set of network states versus the corresponding factorized distribution over its parts. Using Gaussian distributions, we compute analytic results for several prototypical network topologies. Our findings show that operating near the edge of criticality is favorable for a high rate of information integration in complex dynamical networks. This observation is consistent across network topologies. We discuss the implication of these results for biological and communication networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    For the case of asymmetric weights, the entries of the covariance matrix cannot be explicitly expressed as a matrix equation. However, they may still be solved by Jordan decomposition of both sides of the Lyapunov equation.

References

  1. Arsiwalla, X.D., Betella, A., Martínez, E., Omedas, P., Zucca, R., Verschure, P.: The dynamic connectome: a tool for large scale 3d reconstruction of brain activity in real time. In: Rekdalsbakken, W., Bye, R., Zhang, H. (eds.) 27th European Conference on Modeling and Simulation (ECMS), Alesund, Norway (2013)

    Google Scholar 

  2. Arsiwalla, X.D., Dalmazzo, D., Zucca, R., Betella, A., Brandi, S., Martinez, E., Omedas, P., Verschure, P.: Connectomics to semantomics: addressing the brain’s big data challenge. Procedia Comput. Sci. 53, 48–55 (2015)

    Article  Google Scholar 

  3. Arsiwalla, X.D., Verschure, P.: Computing information integration in brain networks. In: Wierzbicki, A., Brandes, U., Schweitzer, F., Pedreschi, D. (eds.) NetSci-X 2016. LNCS, vol. 9564, pp. 136–146. Springer, Heidelberg (2015). doi:10.1007/978-3-319-28361-6_11

    Chapter  Google Scholar 

  4. Arsiwalla, X.D., Verschure, P.F.: Integrated information for large complex networks. In: The 2013 International Joint Conference on Neural Networks (IJCNN), pp. 1–7. IEEE (2013)

    Google Scholar 

  5. Arsiwalla, X.D., Zucca, R., Betella, A., Martinez, E., Dalmazzo, D., Omedas, P., Deco, G., Verschure, P.: Network dynamics with brainx3: a large-scale simulation of the human brain network with real-time interaction. Front. Neuroinf. 9(2) (2015). http://www.frontiersin.org/neuroinformatics/10.3389/fninf.2015.00002/abstract

  6. Balduzzi, D., Tononi, G.: Integrated information in discrete dynamical systems: motivation and theoretical framework. PLoS Comput. Biol. 4(6), e1000091 (2008)

    Article  Google Scholar 

  7. Barrett, A.B., Barnett, L., Seth, A.K.: Multivariate granger causality and generalized variance. Phys. Rev. E 81(4), 041907 (2010)

    Article  MathSciNet  Google Scholar 

  8. Barrett, A.B., Seth, A.K.: Practical measures of integrated information for time-series data. PLoS Comput. Biol. 7(1), e1001052 (2011)

    Article  MathSciNet  Google Scholar 

  9. Betella, A., Bueno, E.M., Kongsantad, W., Zucca, R., Arsiwalla, X.D., Omedas, P., Verschure, P.F.: Understanding large network datasets through embodied interaction in virtual reality. In: Proceedings of the 2014 Virtual Reality International Conference, p. 23. ACM (2014)

    Google Scholar 

  10. Betella, A., Cetnarski, R., Zucca, R., Arsiwalla, X.D., Martinez, E., Omedas, P., Mura, A., Verschure, P.: BrainX3: embodied exploration of neural data. In: Virtual Reality International Conference (VRIC 2014), Laval, France (2014)

    Google Scholar 

  11. Deco, G., Ponce-Alvarez, A., Mantini, D., Romani, G.L., Hagmann, P., Corbetta, M.: Resting-state functional connectivity emerges from structurally and dynamically shaped slow linear fluctuations. J. Neurosci. 33(27), 11239–11252 (2013)

    Article  Google Scholar 

  12. Oizumi, M., Albantakis, L., Tononi, G.: From the phenomenology to the mechanisms of consciousness: integrated information theory 3.0. PLoS Comput. Biol. 10(5), e1003588 (2014)

    Article  Google Scholar 

  13. Omedas, P., Betella, A., Zucca, R., Arsiwalla, X.D., Pacheco, D., Wagner, J., Lingenfelser, F., Andre, E., Mazzei, D., Lanatá, A., Tognetti, A., de Rossi, D., Grau, A., Goldhoorn, A., Guerra, E., Alquezar, R., Sanfeliu, A., Verschure, P.: XIM-engine: a software framework to support the development of interactive applications that uses conscious and unconscious reactions in immersive mixed reality. In: Proceedings of the 2014 Virtual Reality International Conference, VRIC 2014, p. 26. ACM (2014)

    Google Scholar 

  14. Orlandi, J.G., Soriano, J., Alvarez-Lacalle, E., Teller, S., Casademunt, J.: Noise focusing and the emergence of coherent activity in neuronal cultures. Nat. Phys. 9(9), 582–590 (2013)

    Article  Google Scholar 

  15. Tononi, G.: An information integration theory of consciousness. BMC Neurosci. 5(1), 42 (2004)

    Article  Google Scholar 

  16. Tononi, G., Sporns, O.: Measuring information integration. BMC Neurosci. 4(1), 31 (2003)

    Article  Google Scholar 

  17. Tononi, G., Sporns, O., Edelman, G.M.: A measure for brain complexity: relating functional segregation and integration in the nervous system. Proc. Nat. Acad. Sci. 91(11), 5033–5037 (1994)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by the European Research Council’s CDAC project: “The Role of Consciousness in Adaptive Behavior: A Combined Empirical, Computational and Robot based Approach” (ERC-2013-ADG 341196).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xerxes D. Arsiwalla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Arsiwalla, X.D., Verschure, P.F.M.J. (2016). High Integrated Information in Complex Networks Near Criticality. In: Villa, A., Masulli, P., Pons Rivero, A. (eds) Artificial Neural Networks and Machine Learning – ICANN 2016. ICANN 2016. Lecture Notes in Computer Science(), vol 9886. Springer, Cham. https://doi.org/10.1007/978-3-319-44778-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44778-0_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44777-3

  • Online ISBN: 978-3-319-44778-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics