Abstract
The Linear Noise Approximation (LNA) is a continuous approximation of the CME, which improves scalability and is accurate for those reactions satisfying the leap conditions. We formulate a novel stochastic hybrid approximation method for chemical reaction networks based on adaptive partitioning of the species and reactions according to leap conditions into two classes, one solved numerically via the CME and the other using the LNA. The leap criteria are more general than partitioning based on population thresholds, and the method can be combined with any numerical solution of the CME. We then use the hybrid model to derive a fast approximate model checking algorithm for Stochastic Evolution Logic (SEL). Experimental evaluation on several case studies demonstrates that the techniques are able to provide an accurate stochastic characterisation for a large class of systems, especially those presenting dynamical stiffness, resulting in significant improvement of computation time while still maintaining scalability.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abate, A., Brim, L., Češka, M., Kwiatkowska, M.: Adaptive aggregation of markov chains: quantitative analysis of chemical reaction networks. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 195–213. Springer, Heidelberg (2015)
Adler, R.J.: An introduction to continuity, extrema, related topics for general Gaussian processes. Lect. Notes-Monogr. Ser. 12, i-155 (1990)
Anderson, D.F., Kurtz, T.G.: Stochastic Analysis of Biochemical Systems. Springer, Heidelberg (2015)
Arkin, A., Ross, J., McAdams, H.H.: Stochastic kinetic analysis of developmental pathway bifurcation in phage \(\lambda \)-infected escherichia coli cells. Genetics 149(4), 1633–1648 (1998)
Bortolussi, L., Lanciani, R.: Model checking Markov population models by central limit approximation. In: Joshi, K., Siegle, M., Stoelinga, M., D’Argenio, P.R. (eds.) QEST 2013. LNCS, vol. 8054, pp. 123–138. Springer, Heidelberg (2013)
Cao, Y., Gillespie, D.T., Petzold, L.R.: The slow-scale stochastic simulation algorithm. J. Chem. Phys. 122(1), 014116 (2005)
Cardelli, L.: On process rate semantics. Theoret. Comput. Sci. 391(3), 190–215 (2008)
Cardelli, L., Kwiatkowska, M., Laurenti, L.: Stochastic analysis of chemical reaction networks using linear noise approximation. In: Roux, O., Bourdon, J. (eds.) CMSB 2015. LNCS, vol. 9308, pp. 64–76. Springer, Heidelberg (2015)
Cardelli, L., Kwiatkowska, M., Laurenti, L.: Programming discrete distributions with chemical reaction networks. In: Rondelez, Y., Woods, D. (eds.) DNA 2016. LNCS, vol. 9818, pp. 35–51. Springer, Heidelberg (2016). doi:10.1007/978-3-319-43994-5_3
Ethier, S.N., Kurtz, T.G.: Markov Processes: Characterization and Convergence, vol. 282. Wiley, Hoboken (2009)
Ganguly, A., Altintan, D., Koeppl, H.: Jump-diffusion approximation of stochastic reaction dynamics: error bounds and algorithms. Multiscale Model. Simul. 13(4), 1390–1419 (2015)
Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81(25), 2340–2361 (1977)
Gillespie, D.T.: The chemical Langevin equation. J. Chem. Phys. 113(1), 297–306 (2000)
Gillespie, D.T.: Simulation methods in systems biology. In: Bernardo, M., Degano, P., Zavattaro, G. (eds.) SFM 2008. LNCS, vol. 5016, pp. 125–167. Springer, Heidelberg (2008)
Goutsias, J.: Quasiequilibrium approximation of fast reaction kinetics in stochastic biochemical systems. J. Chem. Phys. 122(18), 184102 (2005)
Goutsias, J., Jenkinson, G.: Markovian dynamics on complex reaction networks. Phys. Rep. 529(2), 199–264 (2013)
Hasenauer, J., Wolf, V., Kazeroonian, A., Theis, F.: Method of conditional moments (mcm) for the chemical master equation. J. Math. Biol. 69(3), 687–735 (2014)
Henzinger, T.A., Mikeev, L., Mateescu, M., Wolf, V.: Hybrid numerical solution of the chemical master equation. In: Proceedings of the 8th International Conference on Computational Methods in Systems Biology, pp. 55–65. ACM (2010)
Hepp, B., Gupta, A., Khammash, M.: Adaptive hybrid simulations for multiscale stochastic reaction networks. J. Chem. Phys. 142(3), 034118 (2015)
Kwiatkowska, M., Norman, G., Parker, D.: Stochastic model checking, pp. 220–270 (2007)
Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time systems. In: Qadeer, S., Gopalakrishnan, G. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011)
Mateescu, M., Wolf, V., Didier, F., Henzinger, T., et al.: Fast adaptive uniformisation of the chemical master equation. IET 4, 441–452 (2010)
McAdams, H.H., Arkin, A.: Stochastic mechanisms in gene expression. Proc. Nat. Acad. Sci. 94(3), 814–819 (1997)
Munsky, B., Khammash, M.: The finite state projection algorithm for the solution of the chemical master equation. J. Chem. Phys. 124(4), 044104 (2006)
Rao, C.V., Arkin, A.P.: Stochastic chemical kinetics and the quasi-steady-state assumption: application to the gillespie algorithm. J. Chem. Phys. 118(11), 4999–5010 (2003)
Salis, H., Kaznessis, Y.: Accurate hybrid stochastic simulation of a system of coupled chemical or biochemical reactions. J. Chem. Phys. 122(5), 054103 (2005)
Srivastava, R., You, L., Summers, J., Yin, J.: Stochastic vs. deterministic modeling of intracellular viral kinetics. J. Theoret. Biol. 218(3), 309–321 (2002)
Thattai, M., Van Oudenaarden, A.: Intrinsic noise in gene regulatory networks. Proc. Nat. Acad. Sci. 98(15), 8614–8619 (2001)
Thomas, P., Popović, N., Grima, R.: Phenotypic switching in gene regulatory networks. Proc. Nat. Acad. Sci. 111(19), 6994–6999 (2014)
Van Kampen, N.G.: Stochastic Processes in Physics and Chemistry, vol. 1. Elsevier, Amsterdam (1992)
Wallace, E., Gillespie, D., Sanft, K., Petzold, L.: Linear noise approximation is valid over limited times for any chemical system that is sufficiently large. IET Syst. Biol. 6(4), 102–115 (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Appendices
A Proofs
Proposition 1
Let \(x^s \in S^s\) and \(x^f \in S^f\). Then, for \(t \in \mathbb {R}_{\ge 0}\)
where \(\beta _{\tau }(x^s,t)= \sum _{x^f \in S^f} \alpha _{\tau }(x^f,x^s)P(x^f|x^s,t)\).
Proof
By using the law of total probability we have
Then, using Eq. (2), and rearranging terms we have
where \(\beta _{\tau }(x^s,t)= \sum _{x^f \in S^f} \alpha _{\tau }(x^f,x^s)P(x^f|x^s,t)\), that is, the conditional expectation of the propensity rate of \(\tau \) at time t given \(X^s(t)=x^s\).
Theorem 2
Assume \(\varLambda ^s_t\) is non-empty and \(S^s\) is the state space of \(X^s(t)\). Then, the stochastic process \(Z^h:\varOmega \times \mathcal {R}_{\ge 0}\rightarrow \mathcal {S}\), with \(\varOmega \) its sample space and \((\mathcal {S},\mathcal {B})\) a measurable space, is such that for \(A\in \mathcal {B}\) and \(t\in \mathbb {R}_{\ge 0}\)
where \(Z_{x^s}(t)\) is a Gaussian random variable with expected value and variance
where \(\bar{X}^f\) is the virtual fast process introduced in Sect. 3.
Proof
By the law of total probability we have
By application of the LNA it follows that \(X^f(t)\) conditioned on the event \(X^s(t)=x^s\) is a Gaussian random variable with expected value and variance
and covariance matrix
Given a multidimensional Gaussian distribution, each linear combination of its components is still Gaussian. As a consequence, \(E[Z^h(t)|X^s(t)=x^s]=B\cdot E[X^f(t)|X^s(t)=x^s]\) and \(C[Z^h(t)|X^s(t)=x^s]=B\cdot C[X^f(t)|X^s(t)=x^s]\cdot B^T\).
Theorem 3
Assume \(\varLambda ^s_t\) is non-empty. Then, for \(t\in \mathbb {R}_{\ge 0}\)
Proof
The proof follows from the application of the law of total expectation for random variables with mutually exclusive and exhaustive events.
B Figures
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Cardelli, L., Kwiatkowska, M., Laurenti, L. (2016). A Stochastic Hybrid Approximation for Chemical Kinetics Based on the Linear Noise Approximation. In: Bartocci, E., Lio, P., Paoletti, N. (eds) Computational Methods in Systems Biology. CMSB 2016. Lecture Notes in Computer Science(), vol 9859. Springer, Cham. https://doi.org/10.1007/978-3-319-45177-0_10
Download citation
DOI: https://doi.org/10.1007/978-3-319-45177-0_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-45176-3
Online ISBN: 978-3-319-45177-0
eBook Packages: Computer ScienceComputer Science (R0)