Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A New Personal Verification Technique Using Finger-Knuckle Imaging

  • Conference paper
  • First Online:
Computational Collective Intelligence (ICCCI 2016)

Abstract

This paper focuses on automatic pattern-based extracting of biometric features where finger-knuckle images are analyzed. Knuckle images are captured by digital camera, and then by the image processing techniques the most relevant features (patterns) are discovered and extracted. Knuckle-based images were filtered by the Hessian filters. It enabled to enhance image regions with image ridges. In the next stage similarity of images were computed by the Normalized Cross-Correlation algorithm. Ultimately, similarities were classified by the k-NN classifier. The discovered features belong to so-called human physical features, which involves innate human characteristics. Physical biometric features can often be gathered with specialized hardware, needing only software for analysis. That capacity makes such biometrics simpler.

We conducted a variety of experiments and showed advantages and disadvantages of the approaches with promising results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ferrer, M.A., Travieso, C.M., Alonso, J.B.: Using hand Knuckle texture for biometric identifications. IEEE Aerosp. Electron. Syst. Mag. 21(6), 23–27 (2006)

    Article  Google Scholar 

  2. Iwahori, Y., Hattori, A., Adachi, Y., Bhuyan, M.K., Woodham, R.J., Kasugai, K.: Automatic detection of polyp using Hessian Filter and HOG features. Procedia Comput. Sci. 60(1), 730–739 (2015)

    Article  Google Scholar 

  3. Jin, J., Yang, L., Zhang, X., Ding, M.: Vascular tree segmentation in medical images using Hessian-based multiscale filtering and level set method. Comput. Math. Methods Med. 2013, 502013 (2013)

    MathSciNet  MATH  Google Scholar 

  4. Kasprowski, P.: The impact of temporal proximity between samples on eye movement biometric identification. In: Saeed, K., Chaki, R., Cortesi, A., Wierzchoń, S. (eds.) CISIM 2013. LNCS, vol. 8104, pp. 77–87. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  5. Koprowski, R., Teper, S.J., Weglarz, B., Wylegała, E., Krejca, M., Wróbel, Z.: Fully automatic algorithm for the analysis of vessels in the angiographic image of the eye fundus. Biomed. Eng. Online 11 (2012)

    Google Scholar 

  6. Koprowski, R., Wilczynski, S., Wrobel, Z., Kasperczyk, S., Blonska-Fajfrowska, B.: Automatic method for the dermatological diagnosis of selected hand skin features in hyperspectral imaging. Biomed. Eng. Online 13 (2014)

    Google Scholar 

  7. Kumar, A., Ravikanth, C.: Personal authentication using finger Knuckle surface. IEEE Trans. Inf. Forensics Secur. 4(1), 98–110 (2009)

    Article  Google Scholar 

  8. Kumar, A., Wang, B.: Recovering and matching minutiae patterns from finger Knuckle images. Pattern Recogn. Lett. 68, 361–367 (2015)

    Article  Google Scholar 

  9. Kumar, A., Zhou, Y.: Human identification using Knuckle codes. In: Proceedings BTAS 2009, pp. 98–109 (2009)

    Google Scholar 

  10. Lewis, J.P.: Fast normalized cross-correlation. Vis. Interface 10(1), 120–123 (1995)

    Google Scholar 

  11. Li, B., Wang, K., Zhang, D.: On-line signature verification based on PCA (Principal Component Analysis) and MCA (Minor Component Analysis). In: Zhang, D., Jain, A.K. (eds.) ICBA 2004. LNCS(LNAI, LNBI), vol. 3072, pp. 540–546. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  12. Morales, A., Travieso, C.M., Ferrer, M.A., Alonso, J.B.: Improved finger-Knuckle-print authentication based on orientation enhancement. Electron. Lett. 47(6), 380–382 (2011)

    Article  Google Scholar 

  13. Nakhmani, A., Tannenbaum, A.: A new distance measure based on generalized Image Normalized Cross-Correlation for robust video tracking and image recognition. Pattern Recogn. Lett. 34(3), 315–321 (2013)

    Article  Google Scholar 

  14. Nitsch, J., Klein, J., Miller, D., Sure, U., Hahn, K.H.: Automatic segmentation of the Cerebral Falx and adjacent Gyri in 2D ultrasound images. Bildverarbeitung für die Medizin 2015: Algorithmen - Systeme - Anwendungen, pp. 287–292. Springer, Heidelberg (2015)

    Google Scholar 

  15. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979). http://dx.doi.org/10.1109/tsmc.1979.4310076

    Article  MathSciNet  Google Scholar 

  16. Pavlidis, T.: A thinning algorithm for discrete binary images. Comput. Graph. Image Process. 13(2), 142–157 (1980)

    Article  MathSciNet  Google Scholar 

  17. Porwik, P., Doroz, R.: Self-adaptive biometric classifier working on the reduced dataset. In: Polycarpou, M., de Carvalho, A.C.P.L.F., Pan, J.-S., Woźniak, M., Quintian, H., Corchado, E. (eds.) HAIS 2014. LNCS, vol. 8480, pp. 377–388. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  18. Porwik, P., Doroz, R., Wrobel, K.: A new signature similarity measure. In: 2009 World Congress on Nature and Biologically Inspired Computing, NABIC 2009 - Proceedings, pp. 1022–1027 (2009)

    Google Scholar 

  19. Wei, S.D., Lai, S.H.: Fast template matching based on normalized cross correlation with adaptive multilevel winner update. IEEE Trans. Image Process. 17(11), 2227–2235 (2008)

    Article  MathSciNet  Google Scholar 

  20. Di Stefano, L., Mattoccia, S., Tombari, F.: An algorithm for efficient and exhaustive template matching. In: Campilho, A.C., Kamel, M.S. (eds.) ICIAR 2004. LNCS, vol. 3211, pp. 408–415. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  21. Usha, K., Ezhilarasan, M.: Finger Knuckle biometrics - a review. Comput. Electr. Eng. 45, 249–259 (2015)

    Article  Google Scholar 

  22. Woodard, D.L., Flynn, P.J.: Finger surface as a biometric identifier. Comput. Vis. Image Underst. 100(3), 357–384 (2005)

    Article  Google Scholar 

  23. Xiong, M., Yang, W., Sun, C.: Finger-Knuckle-print recognition using LGBP. In: Liu, D., Zhang, H., Polycarpou, M., Alippi, C., He, H. (eds.) ISNN 2011, Part II. LNCS, vol. 6676, pp. 270–277. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafal Doroz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Doroz, R. et al. (2016). A New Personal Verification Technique Using Finger-Knuckle Imaging. In: Nguyen, N., Iliadis, L., Manolopoulos, Y., Trawiński, B. (eds) Computational Collective Intelligence. ICCCI 2016. Lecture Notes in Computer Science(), vol 9876. Springer, Cham. https://doi.org/10.1007/978-3-319-45246-3_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45246-3_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45245-6

  • Online ISBN: 978-3-319-45246-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics