Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Automatic Syllabification and Syllable Timing of Automatically Recognized Speech – for Czech

  • Conference paper
  • First Online:
Text, Speech, and Dialogue (TSD 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9924))

Included in the following conference series:

  • 1753 Accesses

Abstract

Our recent work was focused on automatic speech recognition (ASR) of spoken word archive documents [6, 7]. One of the important tasks was to structuralize the recognized document (to segment the document and to detect sentence boundaries). Prosodic features play significant role in the spoken document structuralization. In our previous work we bound the prosodic information on the ASR events – words and noises. Many prosodic features (e.g. speech rate, vowel prominence or prolongation of last syllables) require higher time resolution than word-level [1]. For that reason we propose a scheme that is able to automatically syllabify the recognized words and by forced-alignment of its phonetic content provide the syllables (and its phonemes) with time-stamps. We presume that words, non-speech events, syllables and phonemes represent an appropriate hierarchical set of structuralization units for processing various prosodic features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.openfst.org/twiki/bin/view/FST/WebHome.

  2. 2.

    http://htk.eng.cam.ac.uk.

  3. 3.

    http://torch.ch.

  4. 4.

    http://nedbatchelder.com/code/modules/hyphenate.html.

References

  1. Bachan, J., Wagner, A., Klessa, K., Demenko, G.: Consistency of prosodic annotation of spontaneous speech for technology needs. In: 7th Language & Technology Conference, pp. 125–129 (2015)

    Google Scholar 

  2. Dahl, G.E., Yu, D., Deng, L., Acero, A.: Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition. IEEE Trans. Audio Speech Lang. Process. 20(1), 30–42 (2012)

    Article  Google Scholar 

  3. Huici, H., Kairuz, H.A., Martens, H., Van Nuffelen, G., De Bodt, M.: Speech rate estimation in disordered speech based on spectral landmark detection. Biomed. Signal Process. Control 27, 1–6 (2016). http://www.sciencedirect.com/science/article/pii/S1746809416000069

    Article  Google Scholar 

  4. Liang, F.M.: Word Hy-phen-a-tion by Com-put-er (hyphenation, computer). Ph.D. thesis, Stanford University, Stanford, CA, USA (1983). aAI8329742

    Google Scholar 

  5. Mateju, L., Červa, P., Ždánský, J.: Investigation into the use of deep neural networks for LVCSR of Czech. In: ECMSM 2015, pp. 1–4 (2015)

    Google Scholar 

  6. Nouza, J., Blavka, K., Boháč, M., Červa, P., Ždánský, J., Silovský, J., Pražák, J.: Voice technology to enable sophisticated access to historical audio archive of the Czech radio. In: Grana, C., Cucchiara, R. (eds.) MM4CH 2011. CCIS, vol. 247, pp. 27–38. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  7. Nouza, J., et al.: Making Czech historical radio archive accessible and searchable for wide public. J. Multimedia 7(2), 159–169 (2012). http://ojs.academypublisher.com/index.php/jmm/article/view/jmm0702159169

    Article  Google Scholar 

  8. Nouza, J., Psutka, J., Uhlír, J.: Phonetic alphabet for speech recognition of Czech. Radioengineering 6(4), 16–20 (1997)

    Google Scholar 

  9. Seps, L., Málek, J., Červa, P., Nouza, J.: Investigation of deep neural networks for robust recognition of nonlinearly distorted speech. In: INTERSPEECH, pp. 363–367 (2014)

    Google Scholar 

  10. Wagner, R.A., Fischer, M.J.: The string-to-string correction problem. J. ACM 21(1), 168–173 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  11. Yarra, C., Deshmukh, O.D., Ghosh, P.K.: A mode-shape classification technique for robust speech rate estimation and syllable nuclei detection. Speech Commun. 78, 62–71 (2016). http://www.sciencedirect.com/science/article/pii/S016763931600025X

    Article  Google Scholar 

Download references

Acknowledgment

This work was partly supported by the Student’s Grant Scheme at the Technical University of Liberec (SGS 2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Boháč .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Boháč, M., Matějů, L., Rott, M., Šafařík, R. (2016). Automatic Syllabification and Syllable Timing of Automatically Recognized Speech – for Czech. In: Sojka, P., Horák, A., Kopeček, I., Pala, K. (eds) Text, Speech, and Dialogue. TSD 2016. Lecture Notes in Computer Science(), vol 9924. Springer, Cham. https://doi.org/10.1007/978-3-319-45510-5_62

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45510-5_62

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45509-9

  • Online ISBN: 978-3-319-45510-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics