Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Abstract

When we talk about the “tails” of a one-dimensional random variable X, we usually think about probabilities of the type P(X > x) and P(X < −x) for a large positive x, with the appropriate meaning of “right tail” and “left tail.” If \((X(t),\,t \in \mathbb{R})\) or \((X_{n},\,n \in \mathbb{Z})\) is a stationary stochastic process, the kind of marginal tails the process has may significantly impact the way memory expresses itself in the process. Particularly important is the distinction between stochastic processes with “light tails” and those with “heavy tails.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • B. Basrak, R. Davis, T. Mikosch, A characterization of multivariate regular variation. Ann. Appl. Probab. 12, 908–920 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • D. Cline, Estimation and linear prediction for regression, autoregression and ARMA with infinite variance data. Ph.D. Thesis, Colorado State University (1983)

    Google Scholar 

  • E. Damek, T. Mikosch, J. Rosiński, G. Samorodnitsky, General inverse problems for regular variation. J Appl Probab. 51A, 229–248 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • R. Davis, T. Hsing, Point processes for partial sum convergence for weakly dependent random variables with infinite variance. Ann. Probab. 23, 879–917 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • R. Davis, T. Mikosch, The sample autocorrelations of heavy–tailed stationary processes with applications to ARCH. Ann. Stat. 26, 2049–2080 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • R. Davis, S. Resnick, Limit theory for moving averages of random variables with regularly varying tail probabilities. Ann. Probab. 13, 179–195 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  • L. deHaan, On Regular Variation and its Application to the Weak Convergence of Sample Extremes (Mathematisch Centrum, Amsterdam, 1970)

    Google Scholar 

  • P. Embrechts, C. Goldie, On closure and factorization properties of subexponential distributions. J. Aust. Math. Soc. A 29, 243–256 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  • P. Embrechts, C. Goldie, N. Veraverbeke, Subexponentiality and infinite divisibility. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 49, 335–347 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  • W. Feller, An Introduction to Probability Theory and Its Applications, vol. 1, 3rd edn. (Wiley, New York, 1968)

    Google Scholar 

  • W. Feller, An Introduction to Probability Theory and Its Applications, vol. 2, 2nd edn. (Wiley, New York, 1971)

    Google Scholar 

  • H. Hult, F. Lindskog, On Kesten’s counterexample to the Cramér-Wold device for regular variation. Bernoulli 12, 133–142 (2006)

    MathSciNet  MATH  Google Scholar 

  • H. Hult, G. Samorodnitsky, Tail probabilities for infinite series of regularly varying random vectors. Bernoulli 14, 838–864 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • M. Jacobsen, T. Mikosch, J. Rosiński, G. Samorodnitsky, Inverse problems for regular variation of linear filters, a cancellation property for σ-finite measures, and identification of stable laws. Ann. Appl. Probab. 19, 210–242 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • J. Leslie, On the non-closure under convolution of the subexponential family. J. Appl. Probab. 26, 58–66 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  • T. Mikosch, G. Samorodnitsky, The supremum of a negative drift random walk with dependent heavy–tailed steps. Ann. Appl. Probab. 10, 1025–1064 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • T. Mikosch, C. Stărică, Limit theory for the sample autocorrelations and extremes of a GARCH(1,1) process. Ann. Stat. 28, 1427–1451 (2000b)

    Google Scholar 

  • A. Pakes, On the tails of waiting-time distribution. J. Appl. Probab. 12, 555–564 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  • E. Pitman, Subexponential distribution functions. J. Aust. Math. Soc. A 29, 337–347 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  • S. Resnick, Point processes, regular variation and weak convergence. Adv. Appl. Probab. 18, 66–138 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  • S. Resnick, Extreme Values, Regular Variation and Point Processes (Springer, New York, 1987)

    Book  MATH  Google Scholar 

  • S. Resnick, Heavy-Tail Phenomena: Probabilistic and Statistical Modeling (Springer, New York, 2007)

    MATH  Google Scholar 

  • S. Resnick, G. Samorodnitsky, Point processes associated with stationary stable processes. Stoch. Process. Appl. 114, 191–210 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • S. Resnick, C. Stărică, Consistency of Hill estimator for dependent data. J. Appl. Probab. 32, 139–167 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • G. Samorodnitsky, M. Taqqu, Stable Non-Gaussian Random Processes (Chapman and Hall, New York, 1994)

    MATH  Google Scholar 

  • J. Teugels, The class of subexponential distributions. Ann. Probab. 3, 1000–1011 (1975)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Samorodnitsky, G. (2016). Heavy Tails. In: Stochastic Processes and Long Range Dependence. Springer Series in Operations Research and Financial Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-45575-4_4

Download citation

Publish with us

Policies and ethics