Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Optimum Solution of the Closest String Problem via Rank Distance

  • Conference paper
  • First Online:
Combinatorial Optimization (ISCO 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9849))

Included in the following conference series:

  • 1067 Accesses

Abstract

The Closest String Problem (CSP) calls for finding an n-string that minimizes its maximum distance from m given n-strings. Integer linear programming (ILP) proved to be able to solve large CSPs under the Hamming distance, whereas for the Levenshtein distance, preferred in computational biology, no ILP formulation has so far be investigated. Recent research has however demonstrated that another metric, rank distance, can provide interesting results with genomic sequences. Moreover, CSP under rank distance can easily be modeled via ILP: optimal solutions can then be certified, or information on approximation obtained via dual gap. In this work we test this ILP formulation on random and biological data. Our experiments, conducted on strings with up to 600 nucleotides, show that the approach outperforms literature heuristics. We also enforce the formulation by cover inequalities. Interestingly, due to the special structure of the rank distance between two strings, cover separation can be done in polynomial time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arbib, C., Labbé, M., Servilio, M.: Scheduling two chains of unit jobs on one machine: a polyhedral study. Networks 58(2), 103–113 (2011)

    MathSciNet  MATH  Google Scholar 

  2. Arbib, C., Servilio, M., Ventura, P.: Improved integer linear programming formulations for the 0–1 closest string problem (2015, submitted)

    Google Scholar 

  3. Balas, E.: Facets of the knapsack polytope. Math. Program. 8, 146–164 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chimani, M., Woste, M., Bocker, S.: A closer look at the closest string and closest substring problem. In: Proceedings of the 13th Workshop on Algorithm Engineering and Experiments – ALENE, pp. 13–24 (2011)

    Google Scholar 

  5. Della Croce, F., Giarraffa, M.: The selective fixing algorithm for the closest string problem. Comput. Oper. Res. 41, 24–30 (2014)

    Article  MathSciNet  Google Scholar 

  6. Dinu, L.P., Ionescu, R.: An efficient rank based approach for closest string and closest substring. PLoS ONE 7(6), e37576 (2012). doi:10.1371/journal.pone.0037576

    Article  Google Scholar 

  7. Dinu, L.P., Popa, A.: On the closest string via rank distance. In: Kärkkäinen, J., Stoye, J. (eds.) CPM 2012. LNCS, vol. 7354, pp. 413–426. Springer, Heidelberg (2012)

    Google Scholar 

  8. Hammer, P.L., Johnson, E.L., Peled, U.N.: Facets of regular 0-1 polytopes. Math. Program. 8, 179–206 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kaparis, K., Letchford, A.N.: Local and global lifted cover inequalities for the 0-1 multidimensional knapsack problem. Eur. J. Oper. Res. 186, 91–103 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and reversals (in Russian). Doklady Akademii Nauk SSSR 163(4), 845–848 (1965). English translation in Soviet Physics Doklady 10(8), 707–710 (1966)

    MathSciNet  MATH  Google Scholar 

  11. Roy, T.J., Wolsey, L.A.: Solving mixed integer programming problems using automatic reformulation. Oper. Res. 35, 45–57 (1987)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Felici .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Arbib, C., Felici, G., Servilio, M., Ventura, P. (2016). Optimum Solution of the Closest String Problem via Rank Distance. In: Cerulli, R., Fujishige, S., Mahjoub, A. (eds) Combinatorial Optimization. ISCO 2016. Lecture Notes in Computer Science(), vol 9849. Springer, Cham. https://doi.org/10.1007/978-3-319-45587-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45587-7_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45586-0

  • Online ISBN: 978-3-319-45587-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics