Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Evolution Under Strong Noise: A Self-Adaptive Evolution Strategy Can Reach the Lower Performance Bound - The pcCMSA-ES

  • Conference paper
  • First Online:
Parallel Problem Solving from Nature – PPSN XIV (PPSN 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9921))

Included in the following conference series:

Abstract

According to a theorem by Astete-Morales, Cauwet, and Teytaud, “simple Evolution Strategies (ES)” that optimize quadratic functions disturbed by additive Gaussian noise of constant variance can only reach a simple regret log-log convergence slope \(\ge -1/2\) (lower bound). In this paper a population size controlled ES is presented that is able to perform better than the \(-1/2\) limit. It is shown experimentally that the pcCMSA-ES is able to reach a slope of \(-1\) being the theoretical lower bound of all comparison-based direct search algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arnold, D.V.: Noisy Optimization with Evolution Strategies. Kluwer, Amsterdam (2002)

    Book  MATH  Google Scholar 

  2. Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments - a survey. IEEE Trans. Evolut. Comput. 9(3), 303–317 (2005)

    Article  Google Scholar 

  3. Beyer, H.-G., Arnold, D.V., Meyer-Nieberg, S.: A new approach for predicting the final outcome of evolution strategy optimization under noise. Genet. Progr. Evol. Mach. 6(1), 7–24 (2005)

    Article  Google Scholar 

  4. Beyer, H.-G., Sendhoff, B.: Evolution strategies for robust optimization. In: 2006 IEEE Congress on Evolutionary Computation CEC 2006, pp. 1346–1353 (2006)

    Google Scholar 

  5. Hansen, N., Niederberger, A.S.P., Guzzella, L., Koumoutsakos, P.: A method for handling uncertainty in evolutionary optimization with an application to feedback control of combustion. IEEE Trans. Evolut. Comput. 13(1), 180–197 (2009)

    Article  Google Scholar 

  6. Beyer, H.-G., Sendhoff, B.: Covariance matrix adaptation revisited – the CMSA evolution strategy. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 123–132. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  7. Astete-Morales, S., Cauwet, M.-L., Teytaud, O.: Evolution strategies with additive noise: a convergence rate lower bound. In: Proceedings of the 2015 ACM Conference on Foundations of Genetic Algorithms XIII, FOGA 2015, pp. 76–84. ACM, New York (2015)

    Google Scholar 

  8. Shamir, O.: On the complexity of bandit and derivative-free stochastic convex optimization. In: COLT 2013 - The 26th Annual Conference on Learning Theory, NJ, USA, pp. 3–24 (2013)

    Google Scholar 

  9. Kenney, J.F.: Mathematics of Statistics: Parts 1–2. Literary Licensing, LLC, New York (2013)

    Google Scholar 

  10. Beyer, H.-G., Melkozerov, A.: The dynamics of self-adaptive multi-recombinant evolution strategies on the general ellipsoid model. IEEE Trans. Evolut. Comput. 18(5), 764–778 (2014)

    Article  Google Scholar 

  11. Beyer, H.-G.: The Theory of Evolution Strategies. Natural Computing Series. Springer, Heidelberg (2001)

    Book  MATH  Google Scholar 

  12. Melkozerov, A., Beyer, H.-G.: Towards an analysis of self-adaptive evolution strategies on the noisy ellipsoid model: progress rate and self-adaptation response. In: GECCO 2015, Madrid, Spain, pp. 297–304. ACM (2015)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Austrian Science Fund FWF under grant P22649-N23 and by the Austrian funding program COMET (COMpetence centers for Excellent Technologies) in the K-Project Advanced Engineering Design Automation (AEDA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Hellwig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Hellwig, M., Beyer, HG. (2016). Evolution Under Strong Noise: A Self-Adaptive Evolution Strategy Can Reach the Lower Performance Bound - The pcCMSA-ES. In: Handl, J., Hart, E., Lewis, P., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds) Parallel Problem Solving from Nature – PPSN XIV. PPSN 2016. Lecture Notes in Computer Science(), vol 9921. Springer, Cham. https://doi.org/10.1007/978-3-319-45823-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45823-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45822-9

  • Online ISBN: 978-3-319-45823-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics