Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Multicriteria Building Spatial Design with Mixed Integer Evolutionary Algorithms

  • Conference paper
  • First Online:
Parallel Problem Solving from Nature – PPSN XIV (PPSN 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9921))

Included in the following conference series:

Abstract

This paper proposes a first step towards multidisciplinary design of building spatial designs. Two criteria, total surface area (i.e. energy performance) and compliance (i.e. structural performance), are combined in a multicriteria optimisation framework. A new way of representing building spatial designs in a mixed integer parameter space is used within this framework. Two state-of-the-art algorithms, namely NSGA-II and SMS-EMOA, are used and compared to compute Pareto front approximations for problems of different size. Moreover, the paper discusses domain specific search operators, which are compared to generic operators, and techniques to handle constraints within the mutation. The results give first insights into the trade-off between energy and structural performance and the scalability of the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. European Commission: Challenging and Changing Europes Built Environment: A Vision for a Sustainable and Competetive Construction Sector By 2030. European Construction Technology Platform (2005)

    Google Scholar 

  2. Liao, X., Li, Q., Yang, X., Zhang, W., Li, W.: Multiobjective optimization for crash safety design of vehicles using stepwise regression model. Struct. Multi. Optim. 35(6), 561–569 (2008)

    Article  Google Scholar 

  3. van der Blom, K., Boonstra, S., Hofmeyer, H., Emmerich, M.T.M.: A super-structure based optimisation approach for building spatial designs. In: ECCOMAS 2016, 5–10 June, Greece (2016, accepted)

    Google Scholar 

  4. Boonstra, S., van der Blom, K., Hofmeyer, H., Amor, R., Emmerich, M.T.M.: Super-structure and super-structure free design search space representations for a building spatial design in multi-disciplinary building optimisation. In: EG-ICE 2016, 29 June–1 July, Poland (2016, accepted)

    Google Scholar 

  5. Martins, J.R., Lambe, A.B.: Multidisciplinary design optimization: a survey of architectures. AIAA J. 51(9), 2049–2075 (2013)

    Article  Google Scholar 

  6. Eastman, C., Eastman, C.M., Teicholz, P., Sacks, R.: BIM Handbook: A Guide to Building Information Modeling for Owners, Managers, Designers, Engineers and Contractors. Wiley, Hoboken (2011)

    Google Scholar 

  7. Palonen, M., Hamdy, M., Hasan, A.: MOBO a new software for multi-objective building performance optimization. In: Wurtz, E. (ed.) Proceedings of the 13th Internationcal Conference of the IBPSA, pp. 2567–2574. IBPSA c/o Miller-Thompson, Toronto (2013)

    Google Scholar 

  8. Hofmeyer, H., Davila Delgado, J.M.: Coevolutionary and genetic algorithm based building spatial and structural design. Artif. Intell. Eng. Des. Anal. Manuf. 29(04), 351–370 (2015)

    Article  Google Scholar 

  9. Hopfe, C.J., Emmerich, M.T.M., Marijt, R., Hensen, J.L.M.: Robust multi-criteria design optimisation in building design. In: Proceedings of Building Simulation and Optimization, Loughborough, UK, pp. 19–26. IBPSA, England (2012)

    Google Scholar 

  10. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  11. Emmerich, M.T.M., Beume, N., Naujoks, B.: An EMO algorithm using the hypervolume measure as selection criterion. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 62–76. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  12. Fonseca, C.M., da Fonseca, V.G., Paquete, L.: Exploring the performance of stochastic multiobjective optimisers with the second-order attainment function. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 250–264. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financing of this project by the Dutch STW via project 13596 (Excellent Buildings via Forefront MDO, Lowest Energy Use, Optimal Spatial and Structural Performance).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koen van der Blom .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

van der Blom, K., Boonstra, S., Hofmeyer, H., Emmerich, M.T.M. (2016). Multicriteria Building Spatial Design with Mixed Integer Evolutionary Algorithms. In: Handl, J., Hart, E., Lewis, P., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds) Parallel Problem Solving from Nature – PPSN XIV. PPSN 2016. Lecture Notes in Computer Science(), vol 9921. Springer, Cham. https://doi.org/10.1007/978-3-319-45823-6_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45823-6_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45822-9

  • Online ISBN: 978-3-319-45823-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics