Abstract
The regularities present in the Ulam spiral provided an incentive for interesting observations in the number theory. Therefore, we have made the Ulam square an object of analysis from the image processing perspective. A version of the Hough transform designed specially for detecting sequences of pixels forming segments of straight lines with the slope defined by an irreducible fraction was used to find line segments in the Ulam spiral. Angles which described the slopes of the segments had tangents p / q expressed by integers p from 0 to 10 and q from \(-10\) to 10 (0 excluded). Due to storage limitations the squares with the side of length up to 5001 points which correspond to the largest prime \(25\,009\,991\) were analyzed at present. In such a square the longest segment has 16 primes and its tangent is 3 (3 up and 1 to the right). Segments of length 14 and 15 were absent. The number of shorter segments varied strongly, from one for a 13-point segment to tens of thousands for shorter ones.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Euler, L.: Extrait d’un lettre de M. Euler le Pere à M. Bernoulli concernant le mémoire imprimé parmi œux de 1771. Nouveaux Mémoires de l’Académie Royale des Sciences et Belles-Lettres (1772), pp. 35–36. http://eulerarchive.maa.org/pages/E461.html
Stein, M.L., Ulam, S.M., Wells, M.B.: A visual display of some properties of the distribution of primes. Am. Math. Mon. 71(5), 516–520 (1964). doi:10.2307/2312588
Leavers, V.F.: Which Hough transform? CVGIP Image Underst. 58, 250–264 (1993). doi:10.1006/ciun.1993.1041
Antolovic, D.: Review of the Hough transform method, with an implementation of the fast Hough variant for line detection. Indiana University, Department of Computer Science (2008)
Mukhopadhyay, P., Chaudhuri, B.B.: A survey of Hough transform. Pattern Recogn. 48(3), 993–1010 (2015). doi:10.1016/j.patcog.2014.08.027
Hassanein, A.S., Mohammad, S., Sameer, M., Ragab, M.E.: A survey on Hough trans-form, theory, techniques and applications. CoRR abs/1502.02160 arXiv:1502.02160 (2015)
Kiryati, N., Lindenbaum, M., Bruckstein, A.M.: Digital or analog Hough transform? Pattern Recogn. Lett. 12(5), 291–297 (1991). doi:10.1016/0167-8655(91)90412-F
Cyganski, D., Noel, W.F., Orr, J.A.: Analytic Hough transform. In: Proceedings of SPIE: Sensing and Reconstruction of Three-Dimensional Objects and Scenes, vol. 1260, pp. 148–159 (1990). doi:10.1117/12.20013
Liu, Y., Cyganski, D., Vaz, R.F.: Efficient implementation of the analytic Hough transform for exact linear feature extraction. In: Proceedings of SPIE, Intelligent Robots and Computer Vision X: Algorithms and Techniques, vol. 1607, pp. 298–309 (1992). doi:10.1117/12.57109
Chmielewski, L.J., Orłowski, A.: Hough transform for lines with slope defined by a pair of co-primes. Mach. Graph. Vis. 22(1/4), 17–25 (2013)
Chmielewski, L.J., Orłowski, A.: Prime numbers in the Ulam square (2016). http://www.lchmiel.pl/primes. Accessed 14 July 2016
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Chmielewski, L.J., Orłowski, A. (2016). Finding Line Segments in the Ulam Square with the Hough Transform. In: Chmielewski, L., Datta, A., Kozera, R., Wojciechowski, K. (eds) Computer Vision and Graphics. ICCVG 2016. Lecture Notes in Computer Science(), vol 9972. Springer, Cham. https://doi.org/10.1007/978-3-319-46418-3_55
Download citation
DOI: https://doi.org/10.1007/978-3-319-46418-3_55
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-46417-6
Online ISBN: 978-3-319-46418-3
eBook Packages: Computer ScienceComputer Science (R0)