Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Extended Robust Cascaded Pose Regression for Face Alignment

  • Conference paper
  • First Online:
Biometric Recognition (CCBR 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9967))

Included in the following conference series:

  • 2844 Accesses

Abstract

We present a highly accurate and very efficient approach for face alignment, called Extended Robust Cascaded Pose Regression (ERCPR), which is robust to large variations due to differences in expressions and pose. Unlike previous shape regression-based approaches, we propose to reference features weighted by three different face landmarks, which are much more robust to shape variations. Then, a correlation-based feature selection method and a two-level boosted regression are applied to establish accurate relation between features and shapes. Experiments on two challenging face datasets (LFPW, COFW) show that our proposed approach significantly outperforms the state-of-art in terms of both efficiency and accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wiskott, L., Fellous, J.-M., Krüger, N., Von der Malsburg, C.: Face recognition by elastic bunch graph matching. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 775–779 (1997)

    Article  Google Scholar 

  2. Lucey, S., Matthews, I., Hu, C., Ambadar, Z., De la Torre, F., Cohn, J.: AAM derived face representations for robust facial action recognition. In: FG (2006)

    Google Scholar 

  3. Fu, Y., Guo, G., Huang, T.S.: Age synthesis and estimation via faces: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 32(11), 1955–1976 (2010)

    Article  Google Scholar 

  4. Ge, Y., Yang, D., Jiwen, L., Li, B., Zhang, X.: Active appearance models using statistical characteristics of gabor based texture representation. J. Vis. Commun. Image Representation 24(5), 627–634 (2013)

    Article  Google Scholar 

  5. Burgos-Artizzu, X., Perona, P., Dollar, P.: Robust face landmark estimation under occlusion. In: IEEE International Conference on Computer Vision (ICCV), Sydney, Australia, 1−8 December 2013, pp. 1513–1520 (2013)

    Google Scholar 

  6. Belhumeur, P.N., Jacobs, D.W., Kriegman, D.J., Kumar, N.: Localizing parts of faces using a consensus of exemplars. IEEE Trans. Pattern Anal. Mach. Intell. 35(12), 2930–2940 (2013)

    Article  Google Scholar 

  7. Zhou, F., Linm, J.: Exemplar-based graph matching for robust facial landmark localization. IEEE International Conference on Computer Vision (ICCV), Sydney, Australia, 1−8 December 2013, pp. 1025–1032 (2013)

    Google Scholar 

  8. Cao, X., Wei, Y., Wen, F., Sun, J.: Face alignment by explicit shape regression. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Providence, RI, USA, 16 − 21 June 2012, pp. 2887–2894 (2012)

    Google Scholar 

  9. Cootes, T., Edwards, G., Taylor, C.: Active appearance models. IEEE Trans. Pattern Anal. Mach. Intell. 23(6), 681–685 (2001)

    Article  Google Scholar 

  10. Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape modelstheir training and application. Comput. Vis. Image Underst. (CVIU) 61(1), 38–59 (1995)

    Article  Google Scholar 

  11. Cristinacce, D., Cootes, T.F.: Feature detection and tracking with constrained local models. Br. Mach. Vis. Conf. (BMVC) 17, 929–938 (2006)

    MATH  Google Scholar 

  12. Lucey, S., Wang, Y., Saragih, J.M., Cohn, J.F.: Non-rigid face tracking with enforced convexity and local appearance consistency constraint. Image Vis. Comput. 28(5), 781–789 (2010)

    Article  Google Scholar 

  13. Saragih, J.M., Lucey, S., Cohn, J.F.: Deformable model fitting by regularized landmark mean-shift. Int. J. Comput. Vis. 91(2), 200–215 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Xiong, X., De la Torre, F.: Supervised descent method and its applications to face alignment. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR (2013)

    Google Scholar 

  15. Cristinacce, D., Cootes, T.: Boosted regression active shape models. In: BMVC (2007)

    Google Scholar 

  16. Dollar, P., Welinder, P., Perona, P.: Cascaded pose regression. In CVPR (2010)

    Google Scholar 

  17. Burgos-Artizzu, X.P., Perona, P., Doll´ar, P.: Robust face landmark estimation under occlusion. In: ICCV, pp. 1513–1520 (2013)

    Google Scholar 

  18. Zhang, J., Shan, S., Kan, M., Chen, X.: Coarse-to-fine auto-encoder networks (CFAN) for real-time face alignment. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part II. LNCS, vol. 8690, pp. 1–16. Springer, Heidelberg (2014)

    Google Scholar 

  19. Valstar, M., Martinez, B., Binefa, X., Pantic, M.: Facial point detection using boosted regression and graph models. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), San Francisco, CA, USA, 13–18 June 2010, pp. 2729-2736 (2010)

    Google Scholar 

  20. Dantone, M., Gall, J., Fanelli, G., VanGool, L.: Real-time facial feature detection using conditional regression forests. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Providence, RI, USA, 16−21 June 2012, pp. 2578–2585 (2012)

    Google Scholar 

  21. Chen, D., Ren, S., Wei, Y., Cao, X., Sun, J.: Joint cascade face detection and alignment. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part VI. LNCS, vol. 8694, pp. 109–122. Springer, Heidelberg (2014)

    Google Scholar 

  22. Cao, C., Weng, Y., Lin, S., Zhou, K.: 3D shape regression for real-time facial animation. ACM Trans. Graph. (SIGGRAPH) 32(4), 41:1–41:10 (2013)

    Article  MATH  Google Scholar 

  23. Yu, X., Lin, Z., Brandt, J., Metaxas, D.N.: Consensus of regression for occlusion-robust facial feature localization. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part IV. LNCS, vol. 8692, pp. 105–118. Springer, Heidelberg (2014)

    Google Scholar 

  24. 300 faces in-the-wild challenge. http://ibug.doc.ic.ac.uk/resources/300-W/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongxin Ge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Ge, Y., Ren, X., Peng, C., Wang, X. (2016). Extended Robust Cascaded Pose Regression for Face Alignment. In: You, Z., et al. Biometric Recognition. CCBR 2016. Lecture Notes in Computer Science(), vol 9967. Springer, Cham. https://doi.org/10.1007/978-3-319-46654-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46654-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46653-8

  • Online ISBN: 978-3-319-46654-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics