Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

An Entropy Estimator Based on Polynomial Regression with Poisson Error Structure

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9948))

Included in the following conference series:

Abstract

A method for estimating Shannon differential entropy is proposed based on the second order expansion of the probability mass around the inspection point with respect to the distance from the point. Polynomial regression with Poisson error structure is utilized to estimate the values of density function. The density estimates at every given data points are averaged to obtain entropy estimators. The proposed estimator is shown to perform well through numerical experiments for various probability distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cover, T.M., Thomas, J.A.: Elements of information theory. Wiley, Hoboken (1991)

    Book  MATH  Google Scholar 

  2. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3), 379–423 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  3. Wand, M.P., Jones, M.C.: Kernel Smoothing. Chapman & Hall/CRC, London (1994)

    MATH  Google Scholar 

  4. Joe, H.: Estimation of entropy and other functionals of a multivariate density. Ann. Inst. Stat. Math. 41(4), 683–697 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  5. Kozachenko, L.F., Leonenko, N.N.: Sample estimate of entropy of a random vector. Prob. Inf. Transm 23, 95–101 (1987)

    MATH  Google Scholar 

  6. Goria, M.N., Leonenko, N.N., Mergel, V.V., Novi Inverardi, P.L.: A new class of random vector entropy estimators and its applications in testing statistical hypotheses. J. Nonparametric Stat. 17(3), 277–297 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Beirlant, J., Dudewicz, E.J., Györfi, L., Meulen, E.C.: Nonparametric entropy estimation: an overview. Int. J. Math. Stat. Sci. 6, 17–39 (1997)

    MathSciNet  MATH  Google Scholar 

  8. Györfi, L., van der Meulen, E.C.: Density-free convergence properties of various estimators of entropy. Comput. Stat. Data Anal. 5(4), 425–436 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  9. Paninski, L.: Estimation of entropy and mutual information. Neural Comput. 15, 1191–1253 (2003)

    Article  MATH  Google Scholar 

  10. Pérez-Cruz, F.: Estimation of information theoretic measures for continuous random variables. In: NIPS, pp. 1257–1264 (2008)

    Google Scholar 

  11. Loftsgaarden, D.O., Quesenberry, C.P.: A nonparametric estimate of a multivariate density function. Ann. Math. Stat. 36(3), 1049–1051 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  12. Mack, Y.P., Rosenblatt, M.: Multivariate k-nearest neighbor density estimates. J. Multivar. Anal. 9(1), 1–15 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  13. Moore, D.S., Yackel, J.W.: Consistency properties of nearest neighbor density function estimators. Ann. Stat. 5(1), 143–154 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hino, H., Koshijima, K., Murata, N.: Non-parametric entropy estimators based on simple linear regression. Comput. Stat. Data Anal. 89, 72–84 (2015)

    Article  MathSciNet  Google Scholar 

  15. Rudemo, M.: Empirical choice of histograms and kernel density estimators. Scand. J. Stat. 9(2), 65–78 (1982)

    MathSciNet  MATH  Google Scholar 

  16. Khan, S., Bandyopadhyay, S., Ganguly, A.R., Saigal, S., Erickson, D.J., Protopopescu, V., Ostrouchov, G.: Relative performance of mutual information estimation methods for quantifying the dependence among short and noisy data. Phys. Rev. E: Stat., Nonlin., Soft Matter Phys. 76(2 Pt 2), 026209 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

Part of this work was supported by JSPS KAKENHI No. 25120009, 25120011, and 16K16108.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideitsu Hino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Hino, H., Akaho, S., Murata, N. (2016). An Entropy Estimator Based on Polynomial Regression with Poisson Error Structure. In: Hirose, A., Ozawa, S., Doya, K., Ikeda, K., Lee, M., Liu, D. (eds) Neural Information Processing. ICONIP 2016. Lecture Notes in Computer Science(), vol 9948. Springer, Cham. https://doi.org/10.1007/978-3-319-46672-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46672-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46671-2

  • Online ISBN: 978-3-319-46672-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics