Abstract
This paper proposes a computer vision based pipeline for inferring the perceived personality of users from their Twitter profile images. We humans make impressions on a daily basis during communication. The perception of personality of a person gives information about the person’s behaviour and is an important attribute in developing rapport. The personality assessment in this paper is referred to as first impressions, which is similar to how humans create a mental image of another person by just looking at their profile pictures. In the proposed automated pipeline, hand crafted (engineered) and learnt feature descriptors are computed on user profile images. The effect of image background is assessed on the perception of the personality from a profile picture. A multivariate regression approach is used to predict the big five personality traits - agreeableness, conscientiousness, extraversion, openness and neuroticism. We study the correlation between the big five personality traits generated from Tweet analysis with the proposed profile image based framework. The experiments show high correlation for scene based first impressions perception. It is interesting to note that the results generated by analysing a profile image uploaded by a user in a particular point in time are in sync with the first impression traits generated by investigating Tweets posted over a longer duration of time.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ferwerda, B., Schedl, M., Tkalcic, M.: Personality & emotional states: understanding users music listening needs. In: UMAP 2015 Extended Proceedings (2015)
Lepri, B., Staiano, J., Rigato, G., Kalimeri, K., Finnerty, A., Pianesi, F., Sebe, N., Pentland, A.: The sociometric badges corpus: a multilevel behavioral dataset for social behavior in complex organizations. In: 2012 International Conference on Privacy, Security, Risk and Trust (PASSAT), pp. 623–628. IEEE (2012)
Mairesse, F., Walker, M.: Automatic recognition of personality in conversation. In: Proceedings of the Human Language Technology Conference of the NAACL, Companion Volume: Short Papers, pp. 85–88. Association for Computational Linguistics (2006)
Mohammadi, G., Vinciarelli, A.: Automatic personality perception: prediction of trait attribution based on prosodic features. IEEE Trans. Affect. Comput. 3, 273–284 (2012)
Pianesi, F., Mana, N., Cappelletti, A., Lepri, B., Zancanaro, M.: Multimodal recognition of personality traits in social interactions. In: Proceedings of the 10th International Conference on Multimodal Interfaces, pp. 53–60. ACM (2008)
Camastra, F., Vinciarelli, A.: Automatic personality perception. In: Camastra, F., Vinciarelli, A. (eds.) Machine Learning for Audio, Image and Video Analysis. Advanced Information and Knowledge Processing, pp. 485–498. Springer, London (2015)
John, O.P., Srivastava, S.: The Big Five trait taxonomy: History, measurement, and theoretical perspectives. Handb. Pers. Theory Res. 2(1999), 102–138 (1999)
Joshi, J., Gunes, H., Goecke, R.: Automatic prediction of perceived traits using visual cues under varied situational context. In: ICPR, pp. 2855–2860 (2014)
Rojas, M., Masip, D., Todorov, A., Vitria, J.: Automatic prediction of facial trait judgments: appearance vs. structural models. PLoS ONE 6(8), e23323 (2011)
Celiktutan, O., Gunes, H.: Automatic prediction of impressions in time and across varying context: personality, attractiveness and likeability. IEEE Trans. Affect. Comput. (2016)
Celiktutan, O., Eyben, F., Sariyanidi, E., Gunes, H., Schuller, B.: MAPTRAITS 2014: the first audio/visual mapping personality traits challenge. In: Proceedings of the 2014 Workshop on Mapping Personality Traits Challenge and Workshop, pp. 3–9. ACM (2014)
Kaya, H., Salah, A.A.: Continuous mapping of personality traits: a novel challenge and failure conditions. In: Proceedings of the 2014 Workshop on Mapping Personality Traits Challenge and Workshop, pp. 17–24. ACM (2014)
Lin, L., Czarnuch, S., Malhotra, A., Yu, L., Schröder, T., Hoey, J.: Affectively aligned cognitive assistance using Bayesian affect control theory. In: Pecchia, L., Chen, L.L., Nugent, C., Bravo, J. (eds.) IWAAL 2014. LNCS, vol. 8868, pp. 279–287. Springer, Heidelberg (2014). doi:10.1007/978-3-319-13105-4_41
Todorov, A., Porter, J.M.: Misleading first impressions different for different facial images of the same person. Psychol. Sci. 25(7), 1404–1417 (2014)
McKeown, G., Valstar, M., Cowie, R., Pantic, M., Schroder, M.: The SEMAINE database: annotated multimodal records of emotionally colored conversations between a person and a limited agent. IEEE Trans. Affect. Comput. 3(1), 5–17 (2012)
Biel, J.I., Gatica-Perez, D.: The YouTube lens: crowdsourced personality impressions and audiovisual analysis of vlogs. IEEE Trans. Multimedia 15(1), 41–55 (2013)
Ferwerda, B., Schedl, M., Tkalcic, M.: Using Instagram picture features to predict users’ personality. In: Tian, Q., Sebe, N., Qi, G.-J., Huet, B., Hong, R., Liu, X. (eds.) MMM 2016. LNCS, vol. 9516, pp. 850–861. Springer, Heidelberg (2016). doi:10.1007/978-3-319-27671-7_71
Celli, F., Bruni, E., Lepri, B.: Automatic personality and interaction style recognition from Facebook profile pictures. In: Proceedings of the 22nd ACM international conference on Multimedia, pp. 1101–1104. ACM (2014)
Zhu, X., Ramanan, D.: Face detection, pose estimation, and landmark localization in the wild. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2879–2886 (2012)
Bosch, A., Zisserman, A., Munoz, X.: Representing shape with a spatial pyramid kernel. In: Proceedings of the ACM international conference on Image and video retrieval (CIVR), pp. 401–408 (2007)
Dhall, A., Asthana, A., Goecke, R., Gedeon, T.: Emotion recognition using PHOG and LPQ features. In: Proceedings of the IEEE Conference Automatic Faces and Gesture Recognition workshop FERA, pp. 878–883 (2011)
Ojansivu, V., Heikkilä, J.: Blur insensitive texture classification using local phase quantization. In: Elmoataz, A., Lezoray, O., Nouboud, F., Mammass, D. (eds.) ICISP 2008. LNCS, vol. 5099, pp. 236–243. Springer, Heidelberg (2008). doi:10.1007/978-3-540-69905-7_27
Parkhi, O.M., Vedaldi, A., Zisserman, A.: Deep face recognition. In: British Machine Vision Conference, vol. 1, p. 6 (2015)
Wu, J., Rehg, J.M.: CENTRIST: a visual descriptor for scene categorization. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1489–1501 (2011)
Chatfield, K., Simonyan, K., Vedaldi, A., Zisserman, A.: Return of the devil in the details: delving deep into convolutional nets. arXiv preprint arXiv:1405.3531 (2014)
Rosipal, R.: Nonlinear partial least squares: an overview. In: Chemoinformatics and Advanced Machine Learning Perspectives: Complex Computational Methods and Collaborative Techniques. ACCM, IGI Global (2011)
Guo, G., Mu, G.: Simultaneous dimensionality reduction and human age estimation via kernel partial least squares regression. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 657–664 (2011)
Schwartz, W.R., Kembhavi, A., Harwood, D., Davis, L.S.: Human detection using partial least squares analysis. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 24–31 (2009)
Schwartz, W.R., Guo, H., Davis, L.S.: A robust and scalable approach to face identification. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part VI. LNCS, vol. 6316, pp. 476–489. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15567-3_35
Dhall, A., Joshi, J., Radwan, I., Goecke, R.: Finding happiest moments in a social context. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012, Part II. LNCS, vol. 7725, pp. 613–626. Springer, Heidelberg (2013). doi:10.1007/978-3-642-37444-9_48
Liu, L., Preotiuc-Pietro, D., Samani, Z.R., Moghaddam, M.E., Ungar, L.: Analyzing personality through social media profile picture choice. In: Tenth International AAAI Conference on Web and Social Media (2016)
Park, G., Schwartz, H.A., Eichstaedt, J.C., Kern, M.L., Kosinski, M., Stillwell, D.J., Ungar, L.H., Seligman, M.E.: Automatic personality assessment through social media language. J. Pers. Soc. Psychol. 108(6), 934 (2015)
Acknowledgments
This work was supported by AGE-WELL NCE Inc., a member of the Networks of Centres of Excellence program and Alzheimer’s Association grant ETAC-14-321494.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Dhall, A., Hoey, J. (2016). First Impressions - Predicting User Personality from Twitter Profile Images. In: Chetouani, M., Cohn, J., Salah, A. (eds) Human Behavior Understanding. HBU 2016. Lecture Notes in Computer Science(), vol 9997. Springer, Cham. https://doi.org/10.1007/978-3-319-46843-3_10
Download citation
DOI: https://doi.org/10.1007/978-3-319-46843-3_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-46842-6
Online ISBN: 978-3-319-46843-3
eBook Packages: Computer ScienceComputer Science (R0)