Abstract
Due to the imperfect implementation of cryptosystems, adversaries are able to obtain secret state of the systems via side-channel attacks which are not considered in the traditional security notions of cryptographic primitives, and thus break their security. Leakage-resilient cryptography was proposed to prevent adversaries from doing so. Katz et al. and Boyle et al. proposed signature schemes which are existentially unforgeable in the bounded leakage model. However, neither takes measures to prevent the adversary from forging on messages that have been signed before. Recently, Wang et al. showed that any signature scheme can be transformed to one that is strongly unforgeable in the leakage environment with the help of a leakage-resilient chameleon hash function. However, their transformation requires changing the key pair of the signature scheme.
In this work, we further improve Wang et al.’s results by proposing a black-box construction of signature schemes, which converts a leakage-resilient signature scheme to one that is both strongly unforgeable and leakage resilient. Our construction does not require adding any element to the signature key pair nor modify the signature scheme at all. It is efficient in the sense that the resulting signature scheme has almost the same computational cost in signing and verification as the underlying scheme.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous hardcore bits and cryptography against memory attacks. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 474–495. Springer, Heidelberg (2009). doi:10.1007/978-3-642-00457-5_28
Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer, Heidelberg (1997). doi:10.1007/BFb0052259
Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking cryptographic protocols for faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 37–51. Springer, Heidelberg (1997). doi:10.1007/3-540-69053-0_4
Boneh, D., Shen, E., Waters, B.: Strongly unforgeable signatures based on computational Diffie-Hellman. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 229–240. Springer, Heidelberg (2006). doi:10.1007/11745853_15
Bos, J.N.E., Chaum, D.: Provably unforgeable signatures. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 1–14. Springer, Heidelberg (1993). doi:10.1007/3-540-48071-4_1
Boyle, E., Segev, G., Wichs, D.: Fully leakage-resilient signatures. J. Cryptology 26(3), 513–558 (2013)
Coron, J.-S.: Resistance against differential power analysis for elliptic curve cryptosystems. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 292–302. Springer, Heidelberg (1999). doi:10.1007/3-540-48059-5_25
Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: IEEE 49th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2008, pp. 293–302. IEEE (2008)
Erdös, P., Frankl, P., Füredi, Z.: Families of finite sets in which no set is covered by the union ofr others. Israel J. Math. 51(1), 79–89 (1985)
Faust, S., Hazay, C., Nielsen, J.B., Nordholt, P.S., Zottarel, A.: Signature schemes secure against hard-to-invert leakage. J. Cryptology 29(2), 422–455 (2016)
Gallagher, P.: Digital signature standard (dss). Federal Information Processing Standards Publications, FIPS, pp. 186–3. Springer, US (2013)
Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: concrete results. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 251–261. Springer, Heidelberg (2001). doi:10.1007/3-540-44709-1_21
Halderman, J.A., Schoen, S.D., Heninger, N., Clarkson, W., Paul, W., Calandrino, J.A., Feldman, A.J., Appelbaum, J., Felten, E.W.: Lest we remember: cold-boot attacks on encryption keys. Commun. ACM 52(5), 91–98 (2009)
Huang, Q., Wong, D.S., Li, J., Zhao, Y.: Generic transformation from weakly to strongly unforgeable signatures. J. Comput. Sci. Technol. 23(2), 240–252 (2008)
Huang, Q., Wong, D.S., Zhao, Y.: Generic transformation to strongly unforgeable signatures. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 1–17. Springer, Heidelberg (2007). doi:10.1007/978-3-540-72738-5_1
Huffman, W.C., Pless, V.: Fundamentals of Error-correcting Codes. Cambridge University Press, Cambridge (2010)
Katz, J., Vaikuntanathan, V.: Signature schemes with bounded leakage resilience. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 703–720. Springer, Heidelberg (2009). doi:10.1007/978-3-642-10366-7_41
Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). doi:10.1007/3-540-48405-1_25
Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996). doi:10.1007/3-540-68697-5_9
Kumar, R., Rajagopalan, S., Sahai, A.: Coding constructions for blacklisting problems without computational assumptions. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 609–623. Springer, Heidelberg (1999). doi:10.1007/3-540-48405-1_38
Lamport, L.: Constructing digital signatures from a one-way function. Technical report, Technical Report CSL-98, SRI International Palo Alto (1979)
Malkin, T., Teranishi, I., Vahlis, Y., Yung, M.: Signatures resilient to continual leakage on memory and computation. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 89–106. Springer, Heidelberg (2011). doi:10.1007/978-3-642-19571-6_7
Micali, S., Reyzin, L.: Physically observable cryptography. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 278–296. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24638-1_16
Pietrzak, K.: A leakage-resilient mode of operation. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 462–482. Springer, Heidelberg (2009). doi:10.1007/978-3-642-01001-9_27
Quisquater, J.-J., Samyde, D.: Electro Magnetic Analysis (EMA): measures and counter-measures for smart cards. In: Attali, I., Jensen, T. (eds.) E-smart 2001. LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001). doi:10.1007/3-540-45418-7_17
Steinfeld, R., Pieprzyk, J., Wang, H.: How to strengthen any weakly unforgeable signature into a strongly unforgeable signature. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 357–371. Springer, Heidelberg (2006). doi:10.1007/11967668_23
Wang, Y., Tanaka, K.: Generic transformation to strongly existentially unforgeable signature schemes with leakage resiliency. In: Chow, S.S.M., Liu, J.K., Hui, L.C.K., Yiu, S.M. (eds.) ProvSec 2014. LNCS, vol. 8782, pp. 117–129. Springer, Heidelberg (2014). doi:10.1007/978-3-319-12475-9_9
Wang, Y., Tanaka, K.: Generic transformation to strongly existentially unforgeable signature schemes with continuous leakage resiliency. In: Foo, E., Stebila, D. (eds.) ACISP 2015. LNCS, vol. 9144, pp. 213–229. Springer, Heidelberg (2015). doi:10.1007/978-3-319-19962-7_13
Wang, Y., Tanaka, K.: Generic transformations for existentially unforgeable signature schemes in the bounded leakage model. Secur. Commun. Networks 9(12), 1829–1842 (2016)
Yuen, T.H., Yiu, S.M., Hui, L.C.K.: Fully leakage-resilient signatures with auxiliary inputs. In: Susilo, W., Mu, Y., Seberry, J. (eds.) ACISP 2012. LNCS, vol. 7372, pp. 294–307. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31448-3_22
Acknowledgements
We would like to thank the anonymous reviewers for their invaluable comments and for referring us to [29]. This work was supported by the National Natural Science Foundation of China (No. 61472146), Guangdong Natural Science Funds for Distinguished Young Scholar (No. 2014A030306021), Guangdong Program for Special Support of Top-notch Young Professionals (No. 2015TQ01X796), Pearl River Nova Program of Guangzhou (No. 201610010037), and the CICAEET fund and the PAPD fund (No. KJR1615).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Huang, J., Huang, Q., Pan, C. (2016). A Black-Box Construction of Strongly Unforgeable Signature Schemes in the Bounded Leakage Model. In: Chen, L., Han, J. (eds) Provable Security. ProvSec 2016. Lecture Notes in Computer Science(), vol 10005. Springer, Cham. https://doi.org/10.1007/978-3-319-47422-9_19
Download citation
DOI: https://doi.org/10.1007/978-3-319-47422-9_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-47421-2
Online ISBN: 978-3-319-47422-9
eBook Packages: Computer ScienceComputer Science (R0)