Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Black-Box Construction of Strongly Unforgeable Signature Schemes in the Bounded Leakage Model

  • Conference paper
  • First Online:
Provable Security (ProvSec 2016)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 10005))

Included in the following conference series:

Abstract

Due to the imperfect implementation of cryptosystems, adversaries are able to obtain secret state of the systems via side-channel attacks which are not considered in the traditional security notions of cryptographic primitives, and thus break their security. Leakage-resilient cryptography was proposed to prevent adversaries from doing so. Katz et al. and Boyle et al. proposed signature schemes which are existentially unforgeable in the bounded leakage model. However, neither takes measures to prevent the adversary from forging on messages that have been signed before. Recently, Wang et al. showed that any signature scheme can be transformed to one that is strongly unforgeable in the leakage environment with the help of a leakage-resilient chameleon hash function. However, their transformation requires changing the key pair of the signature scheme.

In this work, we further improve Wang et al.’s results by proposing a black-box construction of signature schemes, which converts a leakage-resilient signature scheme to one that is both strongly unforgeable and leakage resilient. Our construction does not require adding any element to the signature key pair nor modify the signature scheme at all. It is efficient in the sense that the resulting signature scheme has almost the same computational cost in signing and verification as the underlying scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous hardcore bits and cryptography against memory attacks. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 474–495. Springer, Heidelberg (2009). doi:10.1007/978-3-642-00457-5_28

    Chapter  Google Scholar 

  2. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer, Heidelberg (1997). doi:10.1007/BFb0052259

    Chapter  Google Scholar 

  3. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking cryptographic protocols for faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 37–51. Springer, Heidelberg (1997). doi:10.1007/3-540-69053-0_4

    Chapter  Google Scholar 

  4. Boneh, D., Shen, E., Waters, B.: Strongly unforgeable signatures based on computational Diffie-Hellman. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 229–240. Springer, Heidelberg (2006). doi:10.1007/11745853_15

    Chapter  Google Scholar 

  5. Bos, J.N.E., Chaum, D.: Provably unforgeable signatures. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 1–14. Springer, Heidelberg (1993). doi:10.1007/3-540-48071-4_1

    Chapter  Google Scholar 

  6. Boyle, E., Segev, G., Wichs, D.: Fully leakage-resilient signatures. J. Cryptology 26(3), 513–558 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Coron, J.-S.: Resistance against differential power analysis for elliptic curve cryptosystems. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 292–302. Springer, Heidelberg (1999). doi:10.1007/3-540-48059-5_25

    Chapter  Google Scholar 

  8. Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: IEEE 49th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2008, pp. 293–302. IEEE (2008)

    Google Scholar 

  9. Erdös, P., Frankl, P., Füredi, Z.: Families of finite sets in which no set is covered by the union ofr others. Israel J. Math. 51(1), 79–89 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  10. Faust, S., Hazay, C., Nielsen, J.B., Nordholt, P.S., Zottarel, A.: Signature schemes secure against hard-to-invert leakage. J. Cryptology 29(2), 422–455 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gallagher, P.: Digital signature standard (dss). Federal Information Processing Standards Publications, FIPS, pp. 186–3. Springer, US (2013)

    Google Scholar 

  12. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: concrete results. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 251–261. Springer, Heidelberg (2001). doi:10.1007/3-540-44709-1_21

    Chapter  Google Scholar 

  13. Halderman, J.A., Schoen, S.D., Heninger, N., Clarkson, W., Paul, W., Calandrino, J.A., Feldman, A.J., Appelbaum, J., Felten, E.W.: Lest we remember: cold-boot attacks on encryption keys. Commun. ACM 52(5), 91–98 (2009)

    Article  Google Scholar 

  14. Huang, Q., Wong, D.S., Li, J., Zhao, Y.: Generic transformation from weakly to strongly unforgeable signatures. J. Comput. Sci. Technol. 23(2), 240–252 (2008)

    Article  MathSciNet  Google Scholar 

  15. Huang, Q., Wong, D.S., Zhao, Y.: Generic transformation to strongly unforgeable signatures. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 1–17. Springer, Heidelberg (2007). doi:10.1007/978-3-540-72738-5_1

    Chapter  Google Scholar 

  16. Huffman, W.C., Pless, V.: Fundamentals of Error-correcting Codes. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  17. Katz, J., Vaikuntanathan, V.: Signature schemes with bounded leakage resilience. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 703–720. Springer, Heidelberg (2009). doi:10.1007/978-3-642-10366-7_41

    Chapter  Google Scholar 

  18. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). doi:10.1007/3-540-48405-1_25

    Chapter  Google Scholar 

  19. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996). doi:10.1007/3-540-68697-5_9

    Google Scholar 

  20. Kumar, R., Rajagopalan, S., Sahai, A.: Coding constructions for blacklisting problems without computational assumptions. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 609–623. Springer, Heidelberg (1999). doi:10.1007/3-540-48405-1_38

    Chapter  Google Scholar 

  21. Lamport, L.: Constructing digital signatures from a one-way function. Technical report, Technical Report CSL-98, SRI International Palo Alto (1979)

    Google Scholar 

  22. Malkin, T., Teranishi, I., Vahlis, Y., Yung, M.: Signatures resilient to continual leakage on memory and computation. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 89–106. Springer, Heidelberg (2011). doi:10.1007/978-3-642-19571-6_7

    Chapter  Google Scholar 

  23. Micali, S., Reyzin, L.: Physically observable cryptography. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 278–296. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24638-1_16

    Chapter  Google Scholar 

  24. Pietrzak, K.: A leakage-resilient mode of operation. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 462–482. Springer, Heidelberg (2009). doi:10.1007/978-3-642-01001-9_27

    Chapter  Google Scholar 

  25. Quisquater, J.-J., Samyde, D.: Electro Magnetic Analysis (EMA): measures and counter-measures for smart cards. In: Attali, I., Jensen, T. (eds.) E-smart 2001. LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001). doi:10.1007/3-540-45418-7_17

    Chapter  Google Scholar 

  26. Steinfeld, R., Pieprzyk, J., Wang, H.: How to strengthen any weakly unforgeable signature into a strongly unforgeable signature. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 357–371. Springer, Heidelberg (2006). doi:10.1007/11967668_23

    Chapter  Google Scholar 

  27. Wang, Y., Tanaka, K.: Generic transformation to strongly existentially unforgeable signature schemes with leakage resiliency. In: Chow, S.S.M., Liu, J.K., Hui, L.C.K., Yiu, S.M. (eds.) ProvSec 2014. LNCS, vol. 8782, pp. 117–129. Springer, Heidelberg (2014). doi:10.1007/978-3-319-12475-9_9

    Google Scholar 

  28. Wang, Y., Tanaka, K.: Generic transformation to strongly existentially unforgeable signature schemes with continuous leakage resiliency. In: Foo, E., Stebila, D. (eds.) ACISP 2015. LNCS, vol. 9144, pp. 213–229. Springer, Heidelberg (2015). doi:10.1007/978-3-319-19962-7_13

    Chapter  Google Scholar 

  29. Wang, Y., Tanaka, K.: Generic transformations for existentially unforgeable signature schemes in the bounded leakage model. Secur. Commun. Networks 9(12), 1829–1842 (2016)

    Article  Google Scholar 

  30. Yuen, T.H., Yiu, S.M., Hui, L.C.K.: Fully leakage-resilient signatures with auxiliary inputs. In: Susilo, W., Mu, Y., Seberry, J. (eds.) ACISP 2012. LNCS, vol. 7372, pp. 294–307. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31448-3_22

    Chapter  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous reviewers for their invaluable comments and for referring us to [29]. This work was supported by the National Natural Science Foundation of China (No. 61472146), Guangdong Natural Science Funds for Distinguished Young Scholar (No. 2014A030306021), Guangdong Program for Special Support of Top-notch Young Professionals (No. 2015TQ01X796), Pearl River Nova Program of Guangzhou (No. 201610010037), and the CICAEET fund and the PAPD fund (No. KJR1615).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiong Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Huang, J., Huang, Q., Pan, C. (2016). A Black-Box Construction of Strongly Unforgeable Signature Schemes in the Bounded Leakage Model. In: Chen, L., Han, J. (eds) Provable Security. ProvSec 2016. Lecture Notes in Computer Science(), vol 10005. Springer, Cham. https://doi.org/10.1007/978-3-319-47422-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47422-9_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47421-2

  • Online ISBN: 978-3-319-47422-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics