Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Tooth Segmentation from Cone Beam Computed Tomography Images Using the Identified Root Canal and Harmonic Fields

  • Conference paper
  • First Online:
Intelligent Data Analysis and Applications (ECC 2016)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 535))

  • 1005 Accesses

Abstract

In this paper, a novel method is introduced to segment tooth from Cone Beam Computed Tomography images. Different from traditional methods, the root canal centerline identified by graph theory based energy minimization problem is applied as prior knowledge aiding for the segmentation. Besides, though we use the idea of contour tracking strategy as adopted by most published methods based on slice-by-slice basis, within a slice, the segmentation is based on the harmonic field theory, which makes our method superior to the traditional ones. Effect and efficiency of ours are proved by the experiments.

This work is partially supported by the Doctoral Innovation Fund of Hunan (CX2012B066), the Scientific Research Project in Fujian University of Technology (GY-Z160066). The authors also gratefully acknowledge the helpful comments and suggestions of the reviewers, which have improved the presentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abeysinghe, S.S., Baker, M., Chiu, W., Ju, T.: Segmentation-free skeletonization of grayscale volumes for shape understanding. In: IEEE International Conference on Shape Modeling and Applications, pp. 63–71, June 2008

    Google Scholar 

  2. Alvarez, L., Baumela, L., Henriquez, P., Marquez-Neila, P.: Morphological snakes. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2197–2202, June 2010

    Google Scholar 

  3. Alvarez, L., Baumela, L., Marquez-Neila, P., Henriquez, P.: A real time morphological snakes algorithm. Image Process. Online 2, 1–7 (2012)

    Article  Google Scholar 

  4. Barone, S., Paoli, A., Razionale, A.V., Savignano, R.: 3D reconstruction of individual tooth shapes by integrating dental cad templates and patient-specific anatomy. In: 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp. 79–87 (2014)

    Google Scholar 

  5. Boykov, Y., Jolly, M.-P.: Interactive organ segmentation using graph cuts. In: Delp, S.L., DiGoia, A.M., Jaramaz, B. (eds.) MICCAI 2000. LNCS, vol. 1935, pp. 276–286. Springer, Heidelberg (2000). doi:10.1007/978-3-540-40899-4_28

    Chapter  Google Scholar 

  6. Buchaillard, S.I., Ong, S., Payan, Y., Foong, K.: 3D statistical models for tooth surface reconstruction. Comput. Biol. Med. 37(10), 1461–1471 (2007)

    Article  Google Scholar 

  7. Bulu, H., Alpkocak, A.: Comparison of 3D segmentation algorithms for medical imaging. In: Proceedings of the 26th IEEE International Symposium on Computer-Based Medical Systems, pp. 269–274 (2007)

    Google Scholar 

  8. Chung, G., Vese, L.A.: Image segmentation using a multilayer level-set approach. Comput. Vis. Sci. 12(6), 267–285 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Derraz, F., Beladgham, M., Khelif, M.: Application of active contour models in medical image segmentation. In: International Conference on Information Technology: Coding and Computing, vol. 2, pp. 675–681, April 2004

    Google Scholar 

  10. Gao, H., Chae, O.: Touching tooth segmentation from CT image sequences using coupled level set method. In: 5th International Conference on Visual Information Engineering, pp. 382–387, July 2008

    Google Scholar 

  11. Gao, H., Chae, O.: Individual tooth segmentation from CT images using level set method with shape and intensity prior. Pattern Recogn. 43(7), 2406–2417 (2010)

    Article  Google Scholar 

  12. Hosntalab, M., Aghaeizadeh Zoroofi, R., Abbaspour Tehrani-Fard, A., Shirani, G.: Segmentation of teeth in CT volumetric dataset by panoramic projection and variational level set. Int. J. Comput. Assist. Radiol. Surg. 3(3), 257–265 (2008)

    Article  Google Scholar 

  13. Ji, D.X., Ong, S.H., Foong, K.W.C.: A level-set based approach for anterior teeth segmentation in cone beam computed tomography images. Comput. Biol. Med. 50, 116–128 (2014)

    Article  Google Scholar 

  14. Liao, S.-H., Tong, R.-F., Dong, J.-X.: 3D whole tooth model from CT volume using thin-plate splines. In: International Conference on Computer Supported Cooperative Work in Design, vol. 1, pp. 600–604 (2005)

    Google Scholar 

  15. Liao, S.-H., Han, W., Tong, R.-F., Dong, J.-X.: A hybrid approach to extracting tooth models from CT volumes. In: Martin, R., Bez, H., Sabin, M. (eds.) IMA 2005. LNCS, vol. 3604, pp. 308–317. Springer, Heidelberg (2005). doi:10.1007/11537908_18

    Chapter  Google Scholar 

  16. Pavaloiu, I.B., Vasilateanu, A., Goga, N., Marin, I., Ilie, C., Ungar, A., Patracu, I.: 3D dental reconstruction from CBCT data. In: 2014 International Symposium on Fundamentals of Electrical Engineering, pp. 1–6, November 2014

    Google Scholar 

  17. Pohle, R., Toennies, K.D.: Segmentation of medical images using adaptive region growing (2001)

    Google Scholar 

  18. Schroeder, W., Martin, K.M., Lorensen, W.E.: The Visualization Toolkit, An Object-Oriented Approach To 3D Graphics (2006)

    Google Scholar 

  19. Verma, B., Sardana, H.K.: Real time image segmentation using watershed algorithm on FPGA. Int. J. Eng. Sci. Technol. 3(6), 4518–4522 (2011)

    Google Scholar 

  20. Zou, B.J., Liu, S.J., Liao, S.H., Ding, X., Liang, Y.: Interactive tooth partition of dental mesh base on tooth-target harmonic field. Comput. Biol. Med. 56(2015), 132–144 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Zou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Liu, SJ., Zou, Z., Liang, Y., Pan, JS. (2017). Tooth Segmentation from Cone Beam Computed Tomography Images Using the Identified Root Canal and Harmonic Fields. In: Pan, JS., Snášel, V., Sung, TW., Wang, X. (eds) Intelligent Data Analysis and Applications. ECC 2016. Advances in Intelligent Systems and Computing, vol 535. Springer, Cham. https://doi.org/10.1007/978-3-319-48499-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48499-0_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48498-3

  • Online ISBN: 978-3-319-48499-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics