Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Fitting Spherical Laguerre Voronoi Diagrams to Real-World Tessellations Using Planar Photographic Images

  • Conference paper
  • First Online:
Discrete and Computational Geometry and Graphs (JCDCGG 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9943))

Included in the following conference series:

Abstract

There are many natural phenomena displayed as polygonal tessellations on curved surfaces, typically found in fruit skin patterns. The paper proposes a method to fit given tessellations with spherical Laguerre Voronoi diagrams. The main target of this paper is fruit skin patterns such as jackfruit and lychee covered by tessellation patterns in which each cell contains a unique spike dot that can be considered as a generator. The problem of estimating the weights is reduced to an optimization problem, and can be solved efficiently. The experiments were done with ideal data and real fruit skin data, which show the validity of the method. We also propose related problems for further studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aloupis, G., Pérez-Rosés, H., Pineda-Villavicencio, G., Taslakian, P., Trinchet-Almaguer, D.: Fitting voronoi diagrams to planar tesselations. In: Lecroq, T., Mouchard, L. (eds.) IWOCA 2013. LNCS, vol. 8288, pp. 349–361. Springer, Heidelberg (2013). doi:10.1007/978-3-642-45278-9_30

    Chapter  Google Scholar 

  2. Ash, P.F., Bolker, E.D.: Recognizing dirichlet tessellations. Geom. Ded. 19, 175–206 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aurenhammer, F.: Power diagram: properties, algorithms, and applications. SIAM J. Comput. 16, 78–96 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  4. Aurenhammer, F.: A criterion for the affine equivalence of cell complexes in \(\mathbb{R}^d\) and convex polyhedra in \(\mathbb{R}^{d+1}\). Discrete Comput. Geom. 2, 49–64 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  5. Aurenhammer, F.: Recognising polytopical cell complexes and constructing projection polyhedra. J. Symbolic. Comput. 3, 249–255 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  6. Aurenhammer, F., Klein, R., Lee, D.T.: Voronoi Diagrams and Delaunay Triangulations. World Scientific Publishing Company, Singapore (2013)

    Book  MATH  Google Scholar 

  7. Chaidee, S., Sugihara, K.: Approximation of fruit skin patterns using spherical voronoi diagram. Pattern Anal. Appl. (2016). DOI:10.1007/s10044-016-0534-2

    Google Scholar 

  8. Chaidee, S., Sugihara, K.: Numerical fitting of planar photographic images with spherical voronoi diagram. In: 10th Asian Forum on Graphic Science (2015). DOI:10.13140/RG.2.1.1398.1924

  9. Duan, Q., Kroese, D.P., Brereton, T., Spettl, A., Schmidt, V.: Inverting laguerre tessellations. Comput. J. 57, 1431–1440 (2014)

    Article  Google Scholar 

  10. Evans, D.G., Jones, S.M.: Detecting voronoi (area-of-influence) polygons. Math. Geol. 19, 523–537 (1987)

    Article  Google Scholar 

  11. Hartvigsen, D.: Recognizing voronoi diagrams with linear programming. ORSA. J. Comput. 4, 369–374 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  12. Honda, H.: Description of cellular patterns by dirichlet domains: the two-dimensional case. J. Theor. Biol. 72, 523–543 (1978)

    Article  MathSciNet  Google Scholar 

  13. Honda, H.: Geometrical models for cells in tissues. Int. Rev. Cytol. 81, 191–246 (1983)

    Article  Google Scholar 

  14. Imai, H., Iri, M., Murota, K.: Voronoi diagram in the laguerre geometry and its applications. SIAM J. Comput. 14, 93–105 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lautensack, C.: Random Laguerre Tessellations. Dissertation (2007)

    Google Scholar 

  16. Lautensack, C.: Fitting three-dimensional laguerre tessellations to foam structures. J. Appl. Stat. 35, 985–995 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Liebscher, A.: Laguerre approximztion of random foams. Philos. Mag. 95, 2777–2792 (2015)

    Article  Google Scholar 

  18. Loeb, L.: Space Structures: Their Harmony and Counterpoint. Addison Wesley, Reading (1976)

    MATH  Google Scholar 

  19. Lyckegaard, A., Lauridsen, E.M., Ludwig, W., Fonda, R.W., Poulsen, H.F.: On the use of laguerre tessellations for representations of 3D grain structures. Adv. Eng. Mater. 13, 165–170 (2011)

    Article  Google Scholar 

  20. Mach, P., Koehl, P.: An analytical method for computing atomic contact areas in biomolecules. J. Comput. Chem. 34, 105–120 (2013)

    Article  Google Scholar 

  21. Okabe, A., Boots, B., Sugihara, K., Chiu, S.N.: Spatial Tessellations: Concepts and Applications of Voronoi Diagrams, 2nd edn. Wiley, Chichester (2000)

    Book  MATH  Google Scholar 

  22. Schoenberg, F.P., Ferguson, T., Lu, C.: Inverting dirichlet tessellations. Comput. J. 46, 76–83 (2003)

    Article  MATH  Google Scholar 

  23. Spettl, A., Breregon, T., Duan, Q., Werz, T., Krill Ill, C.E., Kroese, D.P., Schmidt, V.: Fitting laguerre tessellation approximations to tomographic image data. Philos. Mag. 96, 166–189 (2016). doi:10.1080/14786435.2015.1125540

    Article  Google Scholar 

  24. Sugihara, K.: Three-dimensional convex hull as a fruitful source of diagrams. Theor. Comput. Sci. 235, 325–337 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Sugihara, K.: Laguerre voronoi diagram on the sphere. J. Geom. Graph. 6, 69–81 (2002)

    MathSciNet  MATH  Google Scholar 

  26. Suzuki, A., Iri, M.: Approximation of a tessellation of the plane by a voronoi diagram. J. Oper. Res. Soc. Jpn. 29, 69–97 (1986)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The first author acknowledges the support of the MIMS Ph.D. Program of the Meiji Institute for Advanced Study of Mathematical Sciences, Meiji University, and the DPST of IPST, Ministry of Education, Thailand. This research is partly supported by Grant-in-Aid for Basic Research No. 24360039 of MEXT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Supanut Chaidee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Chaidee, S., Sugihara, K. (2016). Fitting Spherical Laguerre Voronoi Diagrams to Real-World Tessellations Using Planar Photographic Images. In: Akiyama, J., Ito, H., Sakai, T., Uno, Y. (eds) Discrete and Computational Geometry and Graphs. JCDCGG 2015. Lecture Notes in Computer Science(), vol 9943. Springer, Cham. https://doi.org/10.1007/978-3-319-48532-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48532-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48531-7

  • Online ISBN: 978-3-319-48532-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics