Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Manifold Learning Algorithm Based on Incremental Tangent Space Alignment

  • Conference paper
  • First Online:
Cloud Computing and Security (ICCCS 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10040))

Included in the following conference series:

Abstract

Manifold learning is developed to find the observed data’s low dimension embeddings in high dimensional data space. As a type of effective nonlinear dimension reduction method, it has been widely applied to data mining, pattern recognition and machine learning. However, most existing manifold learning algorithms work in a “batch” mode and cannot effectively process data collected sequentially (or data streams). In order to explore the intrinsic low dimensional manifold structures in data streams on-line or incrementally, in this paper we propose a new manifold Learning algorithm based on Incremental Tangent Space Alignment, LITSA for short. By constructing data points’ local tangent spaces to preserve local coordinates incrementally, we can accurately obtain the low dimensional global coordinates. Experiments on both synthetic and real datasets show that the proposed algorithm can achieve a more accurate low-dimensional representation of the data than state-of-the-art incremental algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Available from website: http://www.cs.toronto.edu/~roweis/data.html.

References

  1. Tenenbaum, J., Silva, V., Langford, J.: A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)

    Article  Google Scholar 

  2. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15(6), 1373–1396 (2003)

    Article  MATH  Google Scholar 

  3. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290, 2323–2326 (2000)

    Article  Google Scholar 

  4. Zhang, Z.Y., Zha, H.Y.: Principal manifolds and nonlinear dimensionality reduction via tangent space alignment. SIAM J. Sci. Comput. 26, 313–338 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Law, M.H.C., Jain, A.K.: Incremental nonlinear dimensionality reduction by manifold learning. IEEE Trans. Pattern Anal. Mach. Intell. 28, 377–391 (2006)

    Article  Google Scholar 

  6. Jia, P., Yin, J., et al.: Incremental Laplacian eigenmaps by preserving adjacent information between data points. Pattern Recogn. Lett. 30, 1457–1463 (2009)

    Article  Google Scholar 

  7. Kouropteva, O., Okun, O., et al.: Incremental locally linear embedding. Pattern Recogn. 38, 1764–1767 (2005)

    Article  MATH  Google Scholar 

  8. Abdel-Mannan, O., Ben Hamza, A., et al.: Incremental line tangent space alignment algorithm. In: Proceedings of Canadian Conference on Electrical and Computer Engineering (CCECE), pp. 1329–1332. IEEE (2007)

    Google Scholar 

  9. Liu, X., Yin, J., Feng, Z., Dong, J.: Incremental manifold learning via tangent space alignment. In: Schwenker, F., Marinai, S. (eds.) ANNPR 2006. LNCS, vol. 4087, pp. 107–121. Springer, Heidelberg (2006). doi:10.1007/11829898_10

    Chapter  Google Scholar 

  10. Zhao, D.F., Yang, L.: Incremental isometric embedding of high-dimensional data using connected neighborhood graphs. IEEE Trans. Pattern Anal. Mach. Intell. 31, 86–98 (2009)

    Article  Google Scholar 

  11. Abdel-Mannan, O., Ben Hamza, A., et al.: Incremental Hessian locally linear embedding algorithm. In: Proceedings of 9th International Symposium on Signal Processing and Its Applications (ISSPA), pp. 1–4. IEEE (2007)

    Google Scholar 

  12. Min, W.L., Lu, L., He, X.F.: Locality pursuit embedding. Pattern Recogn. 37(4), 781–788 (2004)

    Article  MATH  Google Scholar 

  13. Ling, G, Han, P., et al.: Face recognition via semi-supervised discriminant local analysis. In: Proceedings of International Conference on Signal and Image Processing Applications (ICSIPA), pp. 292–297. IEEE (2015)

    Google Scholar 

  14. Li, B., Du, J., Zhang, X.: Feature extraction using maximum nonparametric margin projection. Neurocomputing 188, 225–232 (2016)

    Article  Google Scholar 

  15. Han, P., Yin, O., Ling, G.: Semi-supervised generic descriptor in face recognition. In: Proceedings of International Colloquium on Signal Processing and Its Applications (CSPA), pp. 21–25. IEEE (2015)

    Google Scholar 

  16. Xu, Y., Huang, H., et al.: Semi-supervised local fisher discriminant analysis for speaker verification. Adv. Inf. Sci. Serv. Sci. 6, 1–11 (2014)

    Google Scholar 

  17. Artac, M., Jogan, M., Leonardis, A.: Incremental PCA for on-line visual learning and recognition. In: Proceedings of International Conference on Pattern Recognition (ICPR), pp. 781–784. IEEE (2002)

    Google Scholar 

  18. Zhao, H., Yuen, P.C., Kwok, J.T.: A novel incremental principal component analysis and its application for face recognition. IEEE Trans. Syst. 36(4), 873–886 (2006)

    Google Scholar 

  19. Li, Y.M.: On incremental and robust subspace learning. Pattern Recogn. 37(7), 1509–1518 (2004)

    Article  MATH  Google Scholar 

  20. Weng, J.Y., Zhang, Y.L., Hwang, W.S.: Candid covariance-free incremental principal component analysis. IEEE Trans. Pattern Anal. Mach. Intell. 25(8), 1034–1040 (2003)

    Article  Google Scholar 

  21. Golub, G.H., Van Loan, C.F.: Matrix Computations. Johns Hopkins University Press, Baltimore (2012)

    MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China under Grants No. 41471371 and the Natural Science Foundation of Jiangsu Higher Education Institutions of China under Grant No. 15KJB520022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Tan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Tan, C., Ji, G. (2016). A Manifold Learning Algorithm Based on Incremental Tangent Space Alignment. In: Sun, X., Liu, A., Chao, HC., Bertino, E. (eds) Cloud Computing and Security. ICCCS 2016. Lecture Notes in Computer Science(), vol 10040. Springer, Cham. https://doi.org/10.1007/978-3-319-48674-1_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48674-1_48

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48673-4

  • Online ISBN: 978-3-319-48674-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics