Abstract
Unmixing is often a necessary step to analyze 2D SPECT image sequence. However, factor analysis of dynamic sequences (FADS), the commonly used method for unmixing SPECT sequences, suffers from non-uniqueness issue. Optimization-based methods were developed to overcome this issue. These methods are effective but need improvement when the mixing is important or with very low SNR. In this paper, a new objective function using soft spatial prior knowledge is developed. Comparison with previous methods, efficiency and robustness to the choice of priors are illustrated with tests on synthetic dataset. Results on 2D SPECT sequences with high level of noise are also presented and compared.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Perret, P., Slimani, L., Briat, A., Villemain, D., Halimi, S., Demongeot, J., Fagret, D., Ghezzi, C.: Assessment of insulin resistance in fructose-fed rats with 125i-6-deoxy-6-iodo-d-glucose, a new tracer of glucose transport. Eur. J. Nuclear Med. Mol. Imaging 34(5), 734–744 (2007)
Gullberg, G.T., Reutter, B.W., Sitek, A., Maltz, J.S., Budinger, T.F.: Dynamic single photon emission computed tomography-basic principles and cardiac applications. Phys. Med. Biol. 55(20), R111 (2010)
Reutter, B.W., Gullberg, G.T., Boutchko, R., Balakrishnan, K., Botvinick, E.H., Huesman, R.H.: Fully 4-D dynamic cardiac spect image reconstruction using spatiotemporal B-spline voxelization. In: Nuclear Science Symposium Conference Record, 2007. NSS 2007, vol. 6, pp. 4217–4221. IEEE (2007)
Hu, J., Boutchko, R., Sitek, A., Reutter, B.W., Huesman, R.H., Gullberg, G.T.: Dynamic molecular imaging of cardiac innervation using a dual head pinhole spect system, Lawrence Berkeley National Laboratory (2008)
Barber, D.C.: The use of principal components in the quantitative analysis of gamma camera dynamic studies. Phys. Med. Biol. 25(2), 283 (1980)
Moussaoui, S., Hauksdottir, H., Schmidt, F., Jutten, C., Chanussot, J., Brie, D., Douté, S., Benediktsson, J.A.: On the decomposition of mars hyperspectral data by ICA and Bayesian positive source separation. Neurocomputing 71(10), 2194–2208 (2008)
Dobigeon, N., Moussaoui, S., Tourneret, J.-Y., Carteret, C.: Bayesian separation of spectral sources under non-negativity and full additivity constraints. Signal Process. 89(12), 2657–2669 (2009)
Jia, S., Qian, Y.: Constrained nonnegative matrix factorization for hyperspectral unmixing. IEEE Trans. Geosci. Remote Sens. 47(1), 161–173 (2009)
Huck, A., Guillaume, M., Blanc-Talon, J.: Minimum dispersion constrained nonnegative matrix factorization to unmix hyperspectral data. IEEE Trans. Geosci. Remote Sens. 48(6), 2590–2602 (2010)
Bioucas-Dias, J.M., Plaza, A., Dobigeon, N., Parente, M., Qian, D., Gader, P., Chanussot, J.: Hyperspectral unmixing overview: geometrical, statistical, and sparse regression-based approaches. IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens. 5(2), 354–379 (2012)
Di Paola, R., Bazin, J.P., Aubry, F., Aurengo, A., Cavailloles, F., Herry, J.Y., Kahn, E.: Handling of dynamic sequences in nuclear medicine. IEEE Trans. Nuclear Sci. 29(4), 1310–1321 (1982)
Benali, H., Buvat, I., Frouin, F., Bazin, J.P., Di Paola, R.: A statistical model for the determination of the optimal metric in factor analysis of medical image sequences (FAMIS). Phys. Med. Biol. 38(8), 1065 (1993)
Frouin, F., De Cesare, A., Bouchareb, Y., Todd-Pokropek, A., Herment, A.: Spatial regularization applied to factor analysis of medical image sequences (FAMIS). Phys. Med. Biol. 44(9), 2289 (1999)
Buvat, J., Benali, H., Frouin, F., Basin, J.P., Di Paola, R.: Target apex-seeking in factor analysis of medical image sequences. Phys. Med. Biol. 38(1), 123 (1993)
Sitek, A., Di Bella, E.V.R., Gullberg, G.T.: Factor analysis with a priori knowledge-application in dynamic cardiac spect. Phys. Med. Biol. 45(9), 2619 (2000)
Filippi, M., Desvignes, M., Moisan, E., Ghezzi, C., Perret, P., Fagret D.: A priori spatiaux et analyse factorielle de séquences scintigraphiques. In: GRETSI (2015)
Sitek, A., Gullberg, G.T., Huesman, R.H.: Correction for ambiguous solutions in factor analysis using a penalized least squares objective. IEEE Trans. Med. Imaging 21(3), 216–225 (2002)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Filippi, M., Desvignes, M., Moisan, E., Ghezzi, C., Perret, P., Fagret, D. (2016). Factor Analysis of Dynamic Sequence with Spatial Prior for 2D Cardiac Spect Sequences Analysis. In: Blanc-Talon, J., Distante, C., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2016. Lecture Notes in Computer Science(), vol 10016. Springer, Cham. https://doi.org/10.1007/978-3-319-48680-2_21
Download citation
DOI: https://doi.org/10.1007/978-3-319-48680-2_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-48679-6
Online ISBN: 978-3-319-48680-2
eBook Packages: Computer ScienceComputer Science (R0)