Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Factor Analysis of Dynamic Sequence with Spatial Prior for 2D Cardiac Spect Sequences Analysis

  • Conference paper
  • First Online:
Advanced Concepts for Intelligent Vision Systems (ACIVS 2016)

Abstract

Unmixing is often a necessary step to analyze 2D SPECT image sequence. However, factor analysis of dynamic sequences (FADS), the commonly used method for unmixing SPECT sequences, suffers from non-uniqueness issue. Optimization-based methods were developed to overcome this issue. These methods are effective but need improvement when the mixing is important or with very low SNR. In this paper, a new objective function using soft spatial prior knowledge is developed. Comparison with previous methods, efficiency and robustness to the choice of priors are illustrated with tests on synthetic dataset. Results on 2D SPECT sequences with high level of noise are also presented and compared.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Perret, P., Slimani, L., Briat, A., Villemain, D., Halimi, S., Demongeot, J., Fagret, D., Ghezzi, C.: Assessment of insulin resistance in fructose-fed rats with 125i-6-deoxy-6-iodo-d-glucose, a new tracer of glucose transport. Eur. J. Nuclear Med. Mol. Imaging 34(5), 734–744 (2007)

    Article  Google Scholar 

  2. Gullberg, G.T., Reutter, B.W., Sitek, A., Maltz, J.S., Budinger, T.F.: Dynamic single photon emission computed tomography-basic principles and cardiac applications. Phys. Med. Biol. 55(20), R111 (2010)

    Article  Google Scholar 

  3. Reutter, B.W., Gullberg, G.T., Boutchko, R., Balakrishnan, K., Botvinick, E.H., Huesman, R.H.: Fully 4-D dynamic cardiac spect image reconstruction using spatiotemporal B-spline voxelization. In: Nuclear Science Symposium Conference Record, 2007. NSS 2007, vol. 6, pp. 4217–4221. IEEE (2007)

    Google Scholar 

  4. Hu, J., Boutchko, R., Sitek, A., Reutter, B.W., Huesman, R.H., Gullberg, G.T.: Dynamic molecular imaging of cardiac innervation using a dual head pinhole spect system, Lawrence Berkeley National Laboratory (2008)

    Google Scholar 

  5. Barber, D.C.: The use of principal components in the quantitative analysis of gamma camera dynamic studies. Phys. Med. Biol. 25(2), 283 (1980)

    Article  Google Scholar 

  6. Moussaoui, S., Hauksdottir, H., Schmidt, F., Jutten, C., Chanussot, J., Brie, D., Douté, S., Benediktsson, J.A.: On the decomposition of mars hyperspectral data by ICA and Bayesian positive source separation. Neurocomputing 71(10), 2194–2208 (2008)

    Article  Google Scholar 

  7. Dobigeon, N., Moussaoui, S., Tourneret, J.-Y., Carteret, C.: Bayesian separation of spectral sources under non-negativity and full additivity constraints. Signal Process. 89(12), 2657–2669 (2009)

    Article  MATH  Google Scholar 

  8. Jia, S., Qian, Y.: Constrained nonnegative matrix factorization for hyperspectral unmixing. IEEE Trans. Geosci. Remote Sens. 47(1), 161–173 (2009)

    Article  MATH  Google Scholar 

  9. Huck, A., Guillaume, M., Blanc-Talon, J.: Minimum dispersion constrained nonnegative matrix factorization to unmix hyperspectral data. IEEE Trans. Geosci. Remote Sens. 48(6), 2590–2602 (2010)

    Article  Google Scholar 

  10. Bioucas-Dias, J.M., Plaza, A., Dobigeon, N., Parente, M., Qian, D., Gader, P., Chanussot, J.: Hyperspectral unmixing overview: geometrical, statistical, and sparse regression-based approaches. IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens. 5(2), 354–379 (2012)

    Article  Google Scholar 

  11. Di Paola, R., Bazin, J.P., Aubry, F., Aurengo, A., Cavailloles, F., Herry, J.Y., Kahn, E.: Handling of dynamic sequences in nuclear medicine. IEEE Trans. Nuclear Sci. 29(4), 1310–1321 (1982)

    Article  Google Scholar 

  12. Benali, H., Buvat, I., Frouin, F., Bazin, J.P., Di Paola, R.: A statistical model for the determination of the optimal metric in factor analysis of medical image sequences (FAMIS). Phys. Med. Biol. 38(8), 1065 (1993)

    Article  Google Scholar 

  13. Frouin, F., De Cesare, A., Bouchareb, Y., Todd-Pokropek, A., Herment, A.: Spatial regularization applied to factor analysis of medical image sequences (FAMIS). Phys. Med. Biol. 44(9), 2289 (1999)

    Article  Google Scholar 

  14. Buvat, J., Benali, H., Frouin, F., Basin, J.P., Di Paola, R.: Target apex-seeking in factor analysis of medical image sequences. Phys. Med. Biol. 38(1), 123 (1993)

    Article  Google Scholar 

  15. Sitek, A., Di Bella, E.V.R., Gullberg, G.T.: Factor analysis with a priori knowledge-application in dynamic cardiac spect. Phys. Med. Biol. 45(9), 2619 (2000)

    Article  Google Scholar 

  16. Filippi, M., Desvignes, M., Moisan, E., Ghezzi, C., Perret, P., Fagret D.: A priori spatiaux et analyse factorielle de séquences scintigraphiques. In: GRETSI (2015)

    Google Scholar 

  17. Sitek, A., Gullberg, G.T., Huesman, R.H.: Correction for ambiguous solutions in factor analysis using a penalized least squares objective. IEEE Trans. Med. Imaging 21(3), 216–225 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Filippi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Filippi, M., Desvignes, M., Moisan, E., Ghezzi, C., Perret, P., Fagret, D. (2016). Factor Analysis of Dynamic Sequence with Spatial Prior for 2D Cardiac Spect Sequences Analysis. In: Blanc-Talon, J., Distante, C., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2016. Lecture Notes in Computer Science(), vol 10016. Springer, Cham. https://doi.org/10.1007/978-3-319-48680-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48680-2_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48679-6

  • Online ISBN: 978-3-319-48680-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics