Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Joint Segmentation of Myocardium on Rest and Stress Spect Images

  • Conference paper
  • First Online:
Advanced Concepts for Intelligent Vision Systems (ACIVS 2016)

Abstract

This paper presents a level set segmentation of the myocardium, endocardium and epicardium surfaces of the heart from 2D SPECT rest and stress perfusion images of the same patient to compute a heterogeneity index. Cardiac SPECT images have low resolution, low signal to noise ratio and lack of anatomical information. So accurate segmentation is difficult. The proposed method adds joint constraints of shape, parallelism and intensity in a level-set framework to simultaneously extract myocardium from rest and stress images. Results are compared to classical level-set segmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Becker, M., Magnenat-Thalmann, N.: Deformable models in medical image segmentation. In: Magnenat-Thalmann, N., Ratib, O., Choi, H.F. (eds.) 3D Multiscale Physiological Human, pp. 81–106. Springer, London (2014)

    Chapter  Google Scholar 

  2. Camici, P.G., d’Amati, G., Rimoldi, O.: Coronary microvascular dysfunction: mechanisms and functional assessment. Nat. Rev. Cardiol. 12(1), 48–62 (2015). http://dx.doi.org/10.1038/nrcardio.2014.160

    Article  Google Scholar 

  3. Cremers, D., Osher, S.J., Soatto, S.: Kernel density estimation and intrinsic alignment for shape priors in level set segmentation. Int. J. Comput. Vis. 69(3), 335–351 (2006)

    Article  Google Scholar 

  4. Grosgeorge, D., Petitjean, C., Dacher, J.N., Ruan, S.: Graph cut segmentation with a statistical shape model in cardiac MRI. Comput. Vis. Image Underst. 117(9), 1027–1035 (2013)

    Article  Google Scholar 

  5. Kang, D., Woo, J., Slomka, P.J., Dey, D., Germano, G., Jay Kuo, C.C.: Heart chambers and whole heart segmentation techniques: review. J. Electron. Imaging 21(1), 010901-1–010901-16 (2012)

    Article  Google Scholar 

  6. Khan, M.W.: A survey: image segmentation techniques. Int. J. Future Comput. Commun. 3(2), 89 (2014)

    Article  Google Scholar 

  7. Kohlberger, T., Funka-Lea, G., Desh, V.: Soft level set coupling for LV segmentation in gated perfusion SPECT. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007. LNCS, vol. 4791, pp. 327–334. Springer, Heidelberg (2007). doi:10.1007/978-3-540-75757-3_40

    Chapter  Google Scholar 

  8. Li, C., Kao, C.Y., Gore, J., Ding, Z.: Implicit active contours driven by local binary fitting energy. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2007, pp. 1–7, June 2007

    Google Scholar 

  9. Paragios, N.: A level set approach for shape-driven segmentation and tracking of the left ventricle. IEEE Trans. Med. Imaging 22(6), 773–776 (2003)

    Article  Google Scholar 

  10. Paragios, N.: Curve propagation, level set methods and grouping. In: Paragios, N., Chen, Y., Faugeras, O. (eds.) Handbook of Mathematical Models in Computer Vision, pp. 145–159. Springer, New York (2006)

    Chapter  Google Scholar 

  11. Pham, D.L., Xu, C., Prince, J.L.: Current methods in medical image segmentation 1. Ann. Rev. Biomed. Eng. 2(1), 315–337 (2000)

    Article  Google Scholar 

  12. Poujol, J., Desvignes, M., Broisat, A., Barone-Rochette, G., Vanzetto, G., Fagret, D., Riou, L., Ghezzi, C.: Myocardium segmentation on 3d spect images. In: 2015 IEEE International Conference on Image Processing, ICIP 2015, pp. 4788–4792 (2015)

    Google Scholar 

  13. Riklin-Raviv, T., Sochen, N., Kiryati, N.: Shape-based mutual segmentation. Int. J. Comput. Vis. 79(3), 231–245 (2008)

    Article  MATH  Google Scholar 

  14. Rousson, M., Paragios, N.: Shape priors for level set representations. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2351, pp. 78–92. Springer, Heidelberg (2002). doi:10.1007/3-540-47967-8_6

    Chapter  Google Scholar 

  15. Soneson, H., Ubachs, J.F., Ugander, M., Arheden, H., Heiberg, E.: An improved method for automatic segmentation of the left ventricle in myocardial perfusion spect. J. Nucl. Med. 50(2), 205–213 (2009)

    Article  Google Scholar 

  16. Woo, J., Slomka, P.J., Kuo, C.C.J., Hong, B.W.: Multiphase segmentation using an implicit dual shape prior: application to detection of left ventricle in cardiac mri. Comput. Vis. Image Underst. 117(9), 1084–1094 (2013)

    Article  Google Scholar 

  17. Yang, R., Mirmehdi, M., Xie, X., Hall, D.J.: Shape and appearance based spatiotemporal constraint for LV segmentation in 4D cardiac SPECT. In: CI2BM09 - MICCAI Workshop on Cardiovascular Interventional Imaging and Biophysical Modelling, London, United Kingdom, p. 10, September 2009

    Google Scholar 

  18. Yu, Z.Q., Zhu, Y., Yang, J., Zhu, Y.M.: A hybrid region-boundary model for cerebral cortical segmentation in mri. Comput. Med. Imaging Graph. 30(3), 197–208 (2006). http://dx.doi.org/10.1016/j.compmedimag.2006.03.006

    Article  Google Scholar 

  19. Zhao, Y.Q., Wang, X.F., Shih, F.Y., Yu, G.: A level-set method based on global and local regions for image segmentation. Int. J. Pattern Recogn. Artif. Intell. 26(01), 1255004 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Desvignes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Filippi, M. et al. (2016). Joint Segmentation of Myocardium on Rest and Stress Spect Images. In: Blanc-Talon, J., Distante, C., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2016. Lecture Notes in Computer Science(), vol 10016. Springer, Cham. https://doi.org/10.1007/978-3-319-48680-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48680-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48679-6

  • Online ISBN: 978-3-319-48680-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics