Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Parallel Materialization of Datalog Programs with Spark for Scalable Reasoning

  • Conference paper
  • First Online:
Web Information Systems Engineering – WISE 2016 (WISE 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10041))

Included in the following conference series:

Abstract

As the volume of semantic data increases rapidly, semantic reasoning becomes a very challenging task. Existing scalable reasoners focus on fragments of OWL 2 RL (eg. RDFS, OWL Horst), and cannot support Semantic Web Rules Language (SWRL) rules, which are widely used in real-world knowledge-based applications. As reasoning of OWL 2 RL ontology extended with SWRL rules can be implemented by materialization of Datalog programs, we propose an approach on parallel materialization of Datalog programs with Spark for scalable reasoning. Since existing scalable reasoners aimed for deterministic rule sets, they used rule-specific strategies for translation of rule execution to parallel jobs and performance optimization techniques. Thus, they cannot be easily extended to support application-specific semantics. In this paper, we propose a rule-independent automatic translation strategy, and several optimization techniques including a dynamic data partition model, a duplication removing strategy and a dependency-aware rule scheduling strategy. These techniques can generalize to vast application-specific semantic rules. Finally, we evaluate our approach with both synthetic and real knowledge bases. The experimental results show our implementation is scalable and the reasoning speed is comparable with that of CiChild, the state-of-the-art scalable reasoner for RDFS/OWL Horst semantics using rule-specific optimizations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://spark.apache.org/docs/latest/index.html.

References

  1. https://datahub.io/

  2. https://www.w3.org/TR/owl2-profiles/

  3. https://www.w3.org/Submission/SWRL/

  4. Lehmann, J., Isele, R., Jakob, M., et al.: DBpedia - a large-scale, multilingual knowledge base extracted from Wikipedia. J. Semant. Web 6(2), 167–195 (2015)

    Google Scholar 

  5. ter Horst, H.J., et al.: Completeness, decidability and complexity of entailment for RDF Schema and a semantic extension involving the OWL vocabulary. Web Semant. J. 3, 79–115 (2005)

    Article  MathSciNet  Google Scholar 

  6. Suchanek, F., Kasneci, G., Weikum, G.: YAGO: a core of semantic knowledge. In: Proceedings of the 16th International Conference on World Wide Web (WWW) (2007)

    Google Scholar 

  7. Gu, R., Wang, S., Wang, F., et al.: Cichlid: efficient large scale RDFS/OWL reasoning with Spark. In: IPDPS, pp. 700–709 (2015)

    Google Scholar 

  8. Urbani, J., Kotoulas, S., Maassen, J., et al.: WebPIE: a web-scale parallel inference engine using MapReduce. J. Web Semant. 17(44), 59–75 (2012)

    Article  Google Scholar 

  9. Dean, J., Ghemawat, S.: MapReduce: simplied data processing on large clusters. In: OSDI, pp. 137–147 (2004)

    Google Scholar 

  10. Peters, M., Sachweh, S., Zündorf, A.: Large scale rule-based reasoning using a laptop. In: Gandon, F., Sabou, M., Sack, H., d’Amato, C., Cudré-Mauroux, P., Zimmermann, A. (eds.) ESWC 2015. LNCS, vol. 9088, pp. 104–118. Springer, Heidelberg (2015). doi:10.1007/978-3-319-18818-8_7

    Chapter  Google Scholar 

  11. Xu, J., Zhang, W., Zhang, Z., et al.: Clustering-based acceleration for virtual machine image deduplication in the cloud environment. J. Syst. Softw. 121, 144–156 (2016)

    Article  Google Scholar 

  12. Motik, B., Nenov, Y., Piro, R.E.F., et al.: Incremental update of Datalog materialisation: the backward/forward algorithm. In: AAAI, pp. 1560–1568 (2015)

    Google Scholar 

  13. Liu, C., Qi, G., Wang, H., Yu, Y.: Large scale fuzzy pD * reasoning using MapReduce. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011. LNCS, vol. 7031, pp. 405–420. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25073-6_26

    Chapter  Google Scholar 

  14. Carroll, J., Dickinson, I., et al.: Jena: implementing the semantic web recommendations. In: Proceedings of the 13th International Conference on World Wide Web, pp. 74–83 (2004)

    Google Scholar 

  15. Rajaraman, A., Ullman, J.D.: Mining of Massive Datasets. Cambridge University Press, New York (2011)

    Book  Google Scholar 

  16. Urbani, J., et al.: DynamiTE: parallel materialization of dynamic RDF data. In: Alani, H., et al. (eds.) ISWC 2013. LNCS, vol. 8218, pp. 657–672. Springer, Heidelberg (2013). doi:10.1007/978-3-642-41335-3_41

    Chapter  Google Scholar 

  17. Guo, Y., Pan, Z.X., Heflin, J.: LUBM: a benchmark for OWL knowledge base systems. J. Web Semant. 3(2–3), 158–182 (2005)

    Article  Google Scholar 

  18. Motik, B., Nenov, Y., Piro, R., et al.: Parallel materialisation of Datalog programs in centralised, main-memory RDF systems. In: Proceedings of the Twenty-Eighth Conference on Artificial Intelligence (AAAI), pp. 129–137 (2014)

    Google Scholar 

  19. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison Wesley, Boston (1995)

    MATH  Google Scholar 

  20. Gao, J., Zhou, J.S., Zhou, C., et al.: GLog: a high level graph analysis system using MapReduce. In: ICDE, pp. 544–555 (2014)

    Google Scholar 

  21. Ullman, J.D.: Principles of Database and Knowledge-base Systems, vol. I. Computer Science Press, New York (1988)

    Google Scholar 

  22. Afrati, F.N., Ullman, J.D.: Transitive closure and recursive Datalog implemented on clusters. In: ICDT, pp. 132–143 (2012)

    Google Scholar 

  23. Subercaze, J., et al.: Inferray: fast in-memory RDF inference. VLDB 9, 468–479 (2016)

    Google Scholar 

Download references

Acknowledgement

This work was partially supported by National Key research and Development Plan (2016YFB1000103), Chinese Academy of Sciences STS Project (KFJ-SW-STS-155)and National Science Technology Support Plan (2015BAF23B03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Wu, H., Liu, J., Wang, T., Ye, D., Wei, J., Zhong, H. (2016). Parallel Materialization of Datalog Programs with Spark for Scalable Reasoning. In: Cellary, W., Mokbel, M., Wang, J., Wang, H., Zhou, R., Zhang, Y. (eds) Web Information Systems Engineering – WISE 2016. WISE 2016. Lecture Notes in Computer Science(), vol 10041. Springer, Cham. https://doi.org/10.1007/978-3-319-48740-3_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48740-3_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48739-7

  • Online ISBN: 978-3-319-48740-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics