Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

An Efficient Construction of Non-Interactive Secure Multiparty Computation

  • Conference paper
  • First Online:
Cryptology and Network Security (CANS 2016)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 10052))

Included in the following conference series:

Abstract

An important issue of secure multi-party computation (MPC) is to improve the efficiency of communication. Non-interactive MPC (NIMPC) introduced by Beimel et al. in Crypto 2014 completely avoids interaction in the information theoretical setting by allowing a correlated randomness setup where the parties get correlated random strings beforehand and locally compute their messages sent to an external output server. The goal of this paper is to reduce the communication complexity in terms of the size of random strings and messages. In this paper, we present an efficient construction of NIMPC, which is designed for arbitrary functions. In contrast to the previous NIMPC protocols, which separately compute each output bit, the proposed protocol simultaneously computes all output bits. As a result, the communication complexity of the proposed protocol is \(\frac{\lceil \log d \rceil \cdot L}{\lceil \log d\rceil +L}\) times smaller than that of the best known protocol where d and L denote the size of input domain and the output length. Thus, the proposed protocol is the most efficient if both input and output lengths are larger than two.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Beimel, A., Gabizon, A., Ishai, Y., Kushilevitz, E., Meldgaard, S., Paskin-Cherniavsky, A.: Non-interactive secure multiparty computation. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp. 387–404. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  2. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation. In: The 20th Annual ACM Symposium on Theory of Computing (STOC 1988), pp. 1–10 (1988)

    Google Scholar 

  3. Chaum, D., Crèpeau, C., Damgård, I.: Multiparty unconditionally secure protocols. In: The 20th Annual ACM Symposium on Theory of Computing (STOC 1988), pp. 11–19 (1988)

    Google Scholar 

  4. Cramer, R., Damgård, I.B., Maurer, U.M.: General secure multi-party computation from any linear secret-sharing scheme. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 316–335. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  5. Data, D., Prabhakaran, M.M., Prabhakaran, V.M.: On the communication complexity of secure computation. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp. 199–216. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  6. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game, or a completeness theorem for protocols with an honest majority. In: The 19th Annual ACM Symposium on Theory of Computing (STOC 1987), pp. 218–229 (1987)

    Google Scholar 

  7. Hirt, M., Maurer, U.: Player simulation and general adversary structures in perfect multiparty computation. J. Cryptology 13(1), 31–60 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Maurer, U.M.: Secure multi-party computation made simple. In: Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 14–28. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  9. Hirt, M., Tschudi, D.: Efficient general-adversary multi-party computation. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270, pp. 181–200. Springer, Heidelberg (2013). doi:10.1007/978-3-642-42045-0_10

    Chapter  Google Scholar 

  10. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with honest majority. In: The 21st Annual ACM Symposium on Theory of Computing (STOC 1989), pp. 73–85 (1989)

    Google Scholar 

  11. Yao, A.C.: Protocols for secure computations. In: The 23rd Annual Symposium on Foundations of Computer Science (FOCS 1982), pp. 160–164 (1982)

    Google Scholar 

  12. Yoshida, M., Obana, S.: On the (in)efficiency of non-interactive secure multiparty computation. In: Kwon, S., Yun, A. (eds.) ICISC 2015. LNCS, vol. 9558, pp. 185–193. Springer, Heidelberg (2016). doi:10.1007/978-3-319-30840-1_12

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Obana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Obana, S., Yoshida, M. (2016). An Efficient Construction of Non-Interactive Secure Multiparty Computation. In: Foresti, S., Persiano, G. (eds) Cryptology and Network Security. CANS 2016. Lecture Notes in Computer Science(), vol 10052. Springer, Cham. https://doi.org/10.1007/978-3-319-48965-0_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48965-0_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48964-3

  • Online ISBN: 978-3-319-48965-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics