Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Towards Concolic Testing for Hybrid Systems

  • Conference paper
  • First Online:
FM 2016: Formal Methods (FM 2016)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 9995))

Included in the following conference series:

Abstract

Hybrid systems exhibit both continuous and discrete behavior. Analyzing hybrid systems is known to be hard. Inspired by the idea of concolic testing (of programs), we investigate whether we can combine random sampling and symbolic execution in order to effectively verify hybrid systems. We identify a sufficient condition under which such a combination is more effective than random sampling. Furthermore, we analyze different strategies of combining random sampling and symbolic execution and propose an algorithm which allows us to dynamically switch between them so as to reduce the overall cost. Our method has been implemented as a web-based checker named HyChecker. HyChecker has been evaluated with benchmark hybrid systems and a water treatment system in order to test its effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. http://sav.sutd.edu.sg/?page_id=2803

  2. http://sav.sutd.edu.sg/SMC/

  3. Abramowitz, M.: Handbook of Mathematical Functions, With Formulas, Graphs, and Mathematical Tables. Dover Publications, New York (1974). Incorporated

    MATH  Google Scholar 

  4. Aziz, M.A., Wassal, A.G., Darwish, N.M.: A machine learning technique for hardness estimation of QFBV SMT problems. In: 10th International Workshop on Satisfiability Modulo Theories (SMT), pp. 57–66 (2012)

    Google Scholar 

  5. Barbot, B., Haddad, S., Picaronny, C.: Coupling and importance sampling for statistical model checking. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 331–346. Springer, Heidelberg (2012). doi:10.1007/978-3-642-28756-5_23

    Chapter  Google Scholar 

  6. Barbot, B., Haddad, S., Picaronny, C., et al.: Importance sampling for model checking of continuous time markov chains. In: SIMUL, pp. 30–35 (2012)

    Google Scholar 

  7. Böhme, M., Paul, S.: On the efficiency of automated testing. In: 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering (FSE-22), pp. 632–642 (2014)

    Google Scholar 

  8. Cadar, C., Dunbar, D., Engler, D.R.: KLEE: unassisted and automatic generation of high-coverage tests for complex systems programs. In: 8th USENIX Symposium on Operating Systems Design and Implementation (OSDI), pp. 209–224 (2008)

    Google Scholar 

  9. Chistikov, D., Dimitrova, R., Majumdar, R.: Approximate counting in SMT and value estimation for probabilistic programs. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 320–334. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46681-0_26

    Google Scholar 

  10. Fehnker, A., Ivančić, F.: Benchmarks for hybrid systems verification. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 326–341. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24743-2_22

    Chapter  Google Scholar 

  11. Filieri, A., Frias, M.F., Păsăreanu, C.S., Visser, W.: Model counting for complex data structures. In: Fischer, B., Geldenhuys, J. (eds.) SPIN 2015. LNCS, vol. 9232, pp. 222–241. Springer, Heidelberg (2015). doi:10.1007/978-3-319-23404-5_15

    Chapter  Google Scholar 

  12. Filieri, A., Pasareanu, C.S., Visser, W., Geldenhuys, J.: Statistical symbolic execution with informed sampling. In: 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering (FSE-22), pp. 437–448 (2014)

    Google Scholar 

  13. Gao, S., Kong, S., Chen, W., Clarke, E.: Delta-complete analysis for bounded reachability of hybrid systems. arXiv preprint arXiv:1404.7171 (2014)

  14. Gao, S., Kong, S., Clarke, E.M.: dReal: an SMT solver for nonlinear theories over the reals. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 208–214. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38574-2_14

    Chapter  Google Scholar 

  15. Godefroid, P., Klarlund, N., Sen, K.: Dart: directed automated random testing. SIGPLAN Not. 40(6), 213–223 (2005)

    Article  Google Scholar 

  16. Gordon, J., Serway, R., McGrew, R.: Physics for Scientists and Engineers, vol. 2. Cengage Learning, Boston (2007)

    Google Scholar 

  17. Gyori, B.M., Liu, B., Paul, S., Ramanathan, R., Thiagarajan, P.S.: Approximate probabilistic verification of hybrid systems. In: Abate, A., Šafránek, D. (eds.) HSB 2015. LNCS (LNBI), vol. 9271, pp. 96–116. Springer, Heidelberg (2015). doi:10.1007/978-3-319-26916-0_6

    Chapter  Google Scholar 

  18. Hahn, E.M., Hartmanns, A., Hermanns, H., Katoen, J.: A compositional modelling and analysis framework for stochastic hybrid systems. Formal Methods Syst. Des. 43(2), 191–232 (2013)

    Article  MATH  Google Scholar 

  19. Henzinger, T.A.: The theory of hybrid automata. In: 11th Annual IEEE Symposium on Logic in Computer Science (LICS), pp. 278–292 (1996)

    Google Scholar 

  20. Henzinger, T.A.: The theory of hybrid automata. In: Inan, M.K., Kurshan, R.P. (eds.) Verification of Digital and Hybrid Systems. NATO ASI Series, vol. 170, pp. 265–292. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  21. Henzinger, T.A., Ho, P.-H., Wong-Toi, H.: HyTech: a model checker for hybrid systems. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 460–463. Springer, Heidelberg (1997). doi:10.1007/3-540-63166-6_48

    Chapter  Google Scholar 

  22. Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about hybrid automata? J. Comput. Syst. Sci. 57(1), 94–124 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Henzinger, T.A., Majumdar, R.: Symbolic model checking for rectangular hybrid systems. In: Graf, S., Schwartzbach, M. (eds.) TACAS 2000. LNCS, vol. 1785, pp. 142–156. Springer, Heidelberg (2000). doi:10.1007/3-540-46419-0_11

    Chapter  Google Scholar 

  24. Iverson, K.E.: A Programming Language. Wiley, New York (1962)

    Book  MATH  Google Scholar 

  25. Jegourel, C., Legay, A., Sedwards, S.: Importance splitting for statistical model checking rare properties. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 576–591. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39799-8_38

    Chapter  Google Scholar 

  26. Jha, S., Limaye, R., Seshia, S.A.: Beaver: engineering an efficient SMT solver for bit-vector arithmetic. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 668–674. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02658-4_53

    Chapter  Google Scholar 

  27. Kamide, N.: Bounded linear-time temporal logic: a proof-theoretic investigation. Ann. Pure Appl. Logic 163(4), 439–466 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kong, P., Li, Y., Chen, X., Sun, J., Sun, M., Wang, J.: Towards concolic testing for hybrid systems. In: Fitzgerald, J., et al. (eds.) FM 2016, LNCS 9995, pp. X–XY. Springer, Heidelberg (2016)

    Google Scholar 

  29. Lebesgue, H.: Intégrale, longueur, aire. Annali di Matematica Pura ed Applicata 7(1), 231–359 (1902)

    Article  MATH  Google Scholar 

  30. Leon-Garcia, A.: Probability and Random Processes For EE’s, 3rd edn. Prentice-Hall Inc., Upper Saddle River (2007)

    Google Scholar 

  31. Lu, F., Iyer, M.K., Parthasarathy, G., Wang, L.-C., Cheng, K.-T., Chen, K.C.: An efficient sequential sat solver with improved search strategies. In: The Conference on Design, Automation and Test in Europe (DATE), 2005, pp. 1102–1107 (2005)

    Google Scholar 

  32. Luckow, K.S., Pasareanu, C.S., Dwyer, M.B., Filieri, A., Visser, W.: Exact and approximate probabilistic symbolic execution for nondeterministic programs. In: ACM/IEEE International Conference on Automated Software Engineering (ASE), pp. 575–586 (2014)

    Google Scholar 

  33. Majumdar, R., Sen, K.: Hybrid concolic testing. In: 29th International Conference on Software Engineering (ICSE 2007), pp. 416–426. IEEE (2007)

    Google Scholar 

  34. Orosz, G., Wilson, R.E., Szalai, R., Stépán, G.: Exciting traffic jams: nonlinear phenomena behind traffic jam formation on highways. Phys. Rev. E. 80, 046205 (2009)

    Article  Google Scholar 

  35. Platzer, A.: Logical Analysis of Hybrid Systems: Proving Theorems for Complex Dynamics. Springer, Heidelberg (2010). Incorporated

    Book  MATH  Google Scholar 

  36. Sen, K.: Concolic testing. In: 22nd IEEE/ACM International Conference on Automated Software Engineering (ASE), pp. 571–572. ACM (2007)

    Google Scholar 

  37. Sen, K., Agha, G.: CUTE and jCUTE: concolic unit testing and explicit path model-checking tools. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 419–423. Springer, Heidelberg (2006). doi:10.1007/11817963_38

    Chapter  Google Scholar 

  38. Swat, S.: A test bed for secure water treatment (2015). http://academics.sutd.edu.sg/news-events/event/news/media-release-swat-a-test-bed-for-secure-water-treatment-swat/

  39. Veach, E., Guibas, L.J.: Optimally combining sampling techniques for monte carlo rendering. In: 22nd Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH), pp. 419–428 (1995)

    Google Scholar 

Download references

Acknowledgement

The project is supported by the NRF project IGDSi1305012 in SUTD and by the National Natural Science Foundation of China under grant no. 61532019, 61202069 and 61272160.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pingfan Kong or Jun Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Kong, P., Li, Y., Chen, X., Sun, J., Sun, M., Wang, J. (2016). Towards Concolic Testing for Hybrid Systems. In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou, A. (eds) FM 2016: Formal Methods. FM 2016. Lecture Notes in Computer Science(), vol 9995. Springer, Cham. https://doi.org/10.1007/978-3-319-48989-6_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48989-6_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48988-9

  • Online ISBN: 978-3-319-48989-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics