Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Objective Comparison of Four GMM-Based Methods for PMA-to-Speech Conversion

  • Conference paper
  • First Online:
Advances in Speech and Language Technologies for Iberian Languages (IberSPEECH 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10077))

  • 727 Accesses

Abstract

In silent speech interfaces a mapping is established between biosignals captured by sensors and acoustic characteristics of speech. Recent works have shown the feasibility of a silent interface based on permanent magnet-articulography (PMA). This paper studies the performance of four different mapping methods based on Gaussian mixture models (GMMs), typical from the voice conversion field, when applied to PMA-to-spectrum conversion. The results show the superiority of methods based on maximum likelihood parameter generation (MLPG), especially when the parameters of the mapping function are trained by minimizing the generation error. Informal listening tests reveal that the resulting speech is moderately intelligible for the database under study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Qi, Y., Weinberg, B., Bi, N.: Enhancement of female esophageal and tracheoesophageal speech. J. Acoust. Soc. Am. 98, 2461–2465 (1995)

    Article  Google Scholar 

  2. Matsui, K., Hara, N.: Enhancement of esophageal speech using formant synthesis. In: Proceedings of the ICASSP, pp. 81–84 (1999)

    Google Scholar 

  3. del Pozo, A., Young, S.J.: Continuous tracheoesophageal speech repair. In: Proceedings of the EUSIPCO, pp. 1–5 (2006)

    Google Scholar 

  4. Türkmen, H.I., Karsligil, M.E.: Reconstruction of dysphonic speech by MELP. In: Ruiz-Shulcloper, J., Kropatsch, W.G. (eds.) CIARP 2008. LNCS, vol. 5197, pp. 767–774. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85920-8_93

    Chapter  Google Scholar 

  5. Mantilla-Caeiros, A., Nakano-Miyatake, M., Perez-Meana, H.: A pattern recognition based esophageal speech enhancement system. J. Appl. Res. Tech. 8(1), 56–71 (2010)

    Google Scholar 

  6. Doi, H., Nakamura, K., Toda, T., Saruwatari, H., Shikano, K.: Esophageal speech enhancement based on statistical voice conversion with Gaussian mixture models. IEICE Trans. Inf. Syst. E93–D(9), 2472–2482 (2010)

    Article  Google Scholar 

  7. Nakamura, K., Toda, T., Saruwatari, H., Shikano, K.: Speaking-aid systems using GMM-based voice conversion for electrolaryngeal speech. Speech Commun. 54(1), 134–146 (2012)

    Article  Google Scholar 

  8. Doi, H., Toda, T., Nakamura, K., Saruwatari, H., Shikano, K.: Alaryngeal speech enhancement based on one-to-many eigenvoice conversion. IEEE/ACM Trans. Audio Speech Lang. Process. 22(1), 172–183 (2014)

    Article  Google Scholar 

  9. Kello, C.T., Plaut, D.C.: A neural network model of the articulatoryacoustic forward mapping trained on recordings of articulatory parameters. J. Acoust. Soc. Am. 116(4), 2354–2364 (2004)

    Article  Google Scholar 

  10. Toda, T., Black, A.W., Tokuda, K.: Statistical mapping between articulatory movements and acoustic spectrum using a Gaussian mixture model. Speech Commun. 50(3), 215–227 (2008)

    Article  Google Scholar 

  11. Denby, B., Schultz, T., Honda, K., Hueber, T., Gilbert, J.M., Brumberg, J.S.: Silent speech interfaces. Speech Commun. 52(4), 270–287 (2010)

    Article  Google Scholar 

  12. Hofe, R., Ell, S.R., Fagan, M.J., Gilbert, J.M., Green, P.D., Moore, R.K., Rybchenko, S.I.: Speech synthesis parameter generation for the assistive silent speech interface MVOCA. In: Proceedings of the INTERSPEECH, pp. 3009–3012 (2011)

    Google Scholar 

  13. Cheah, L.A., Bai, J., Gonzalez, J.A., Ell, S.R., Gilbert, J.M., Moore, R.K., Green, P.D.: A user-centric design of permanent magnetic articulography based assistive speech technology. In: Proceedings of the BioSignals, pp. 109–116 (2015)

    Google Scholar 

  14. Gonzalez, J.A., Cheah, L.A., Gilbert, J.M., Bai, J., Ell, S.R., Green, P.D., Moore, R.K.: A silent speech system based on permanent magnet articulography and direct synthesis. Comput. Speech Lang. 39, 67–87 (2016)

    Article  Google Scholar 

  15. Kain, A., Macon, M.W.: Spectral voice conversion for text-to-speech synthesis. In: Proceedings of the ICASSP, pp. 285–288 (1998)

    Google Scholar 

  16. Stylianou, Y., Cappé, O., Moulines, E.: Continuous probabilistic transform for voice conversion. IEEE Trans. Speech Audio Process. 6(2), 131–142 (1998)

    Article  Google Scholar 

  17. Ye, H., Young, S.J.: Quality-enhanced voice morphing using maximum likelihood transformations. IEEE Trans. Audio Speech Lang. Process. 14(4), 1301–1312 (2006)

    Article  Google Scholar 

  18. Toda, T., Black, A., Tokuda, K.: Voice conversion based on maximum-likelihood estimation of spectral parameter trajectory. IEEE Trans. Audio Speech Lang. Process. 15(8), 2222–2235 (2007)

    Article  Google Scholar 

  19. Erro, D., Alonso, A., Serrano, L., Tavarez, D., Odriozola, I., Sarasola, X., Del-Blanco, E., Sanchez, J., Saratxaga, I., Navas, E., Hernaez, I.: ML parameter generation with a reformulated MGE training criterion participation in the voice conversion challenge 2016. In: Proceedings of the INTERSPEECH (2016)

    Google Scholar 

  20. Kominek, J., Black, A.W.: The CMU arctic speech databases. In: Proceedings of the 5th ISCA Speech Synthesis Workshop, pp. 223–224 (2004)

    Google Scholar 

  21. Erro, D., Sainz, I., Navas, E., Hernáez, I.: Harmonics plus noise model based vocoder for statistical parametric speech synthesis. IEEE J. Sel. Top. Sig. Process. 8(2), 184–194 (2014)

    Article  Google Scholar 

  22. Tokuda, K., Masuko, T., Miyazaki, N., Kobayashi, T.: Multi-space probability distribution HMM. IEICE Trans. Inf. Syst. E85–D(3), 455–464 (2002)

    Google Scholar 

Download references

Acknowledgements

This work has been partially funded by the Spanish Ministry of Economy and Competitiveness (RESTORE project, TEC2015-67163-C2-1-R MINECO/FEDER, UE) and the Basque Government (ELKAROLA, KK-2015/00098). We would like to thank the Univeristy of Hull and the University of Sheffield, especially Dr. Jose A. Gonzalez, for the permission to use the PMA data in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Erro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Erro, D., Hernaez, I., Serrano, L., Saratxaga, I., Navas, E. (2016). Objective Comparison of Four GMM-Based Methods for PMA-to-Speech Conversion. In: Abad, A., et al. Advances in Speech and Language Technologies for Iberian Languages. IberSPEECH 2016. Lecture Notes in Computer Science(), vol 10077. Springer, Cham. https://doi.org/10.1007/978-3-319-49169-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49169-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49168-4

  • Online ISBN: 978-3-319-49169-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics