Abstract
As long as automated vehicles are not able to handle driving in every possible situation, drivers will still have to take part in the driving task from time to time. Recent research focused on handing over control entirely when automated systems reach their boundaries. Our overview on research in this domain shows that handovers are feasible, however, they are not a satisfactory solution since human factor issues such as reduced situation awareness arise in automated driving. In consequence, we suggest to implement cooperative interfaces to enable automated driving even with imperfect automation. We recommend to consider four basic requirements for driver–vehicle cooperation: mutual predictability, directability, shared situation representation, and calibrated trust in automation. We present research that can be seen as a step towards cooperative interfaces in regard to these requirements. Nevertheless, these systems are only solutions for parts of future cooperative interfaces and interaction concepts. Future design of interaction concepts in automated driving should integrate the cooperative approach in total in order to achieve safe and comfortable automated mobility.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abbink, D. A., Mulder, M., & Boer, E. R. (2012). Haptic shared control: Smoothly shifting control authority? Cognition, Technology and Work, 14(1), 19–28. doi:10.1007/s10111-011-0192-5.
Aeberhard, M., Rauch, S., Bahram, M., Tanzmeister, G., Thomas, J., Pilat, Y., et al. (2015). Experience, results and lessons learned from automated driving on germany’s highways. IEEE Intelligent Transportation Systems Magazine, 7(1), 42–57. doi:10.1109/MITS.2014.2360306.
Begum, S. (2013). Intelligent driver monitoring systems based on physiological sensor signals: A review. In 16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013) (pp. 282–289). doi:10.1109/ITSC.2013.6728246.
Beller, J., Heesen, M., & Vollrath, M. (2013). Improving the driver-automation interaction: An approach using automation uncertainty. Human Factors: The Journal of the Human Factors and Ergonomics Society, 55(6), 1130–1141. doi:10.1177/0018720813482327.
Bengler, K., Zimmermann, M., Bortot, D., Kienle, M., & Damböck, D. (2012). Interaction principles for cooperative human-machine systems. It—Information Technology, 54(4), 157–164. doi:10.1524/itit.2012.0680.
Biester, L. (2008). Cooperative automation in automobiles. Psychologie Schweizerische Zeitschrift Für Psychologie Und Ihre Andwendungen.
Brandenburg, S., & Skottke, E. M. (2014). Switching from manual to automated driving and reverse: Are drivers behaving more risky after highly automated driving? In 17th international IEEE conference on intelligent transportation systems (ITSC) (pp. 2978–2983). doi:10.1109/ITSC.2014.6958168.
Braun, A., Frank, S., Majewski, M., & Wang, X. (2015). CapSeat: capacitive proximity sensing for automotive activity recognition. In Proceedings of the 7th international conference on automotive user interfaces and interactive vehicular applications, AutomotiveUI ’15 (pp. 225–232). New York, NY, USA: ACM. doi:10.1145/2799250.2799263.
Carsten, O., Lai, F. C. H., Barnard, Y., Jamson, A. H., & Merat, N. (2012). Control task substitution in semiautomated driving: Does it matter what aspects are automated? Human Factors: The Journal of the Human Factors and Ergonomics Society, 54(5), 747–761. doi:10.1177/0018720812460246.
Christoffersen, K., & Woods, D. D. (2002). 1. How to make automated systems team players. Advances in Human Performance and Cognitive Engineering Research, 2, 1–13. doi:10.1016/S1479-3601(02)02003-9.
Damböck, D., Bengler, K., Farid, M., & Tönert, L. (2012). Übernahmezeiten beim hochautomatisierten Fahren. Tagung Fahrerassistenz. München, 15, 16.
Damböck, D., Weißgerber, T., Kienle, M., & Bengler, K. (2013). Requirements for cooperative vehicle guidance. In 16th international IEEE conference on intelligent transportation systems (ITSC 2013) (pp. 1656–1661). doi:10.1109/ITSC.2013.6728467.
Davidsson, S., & Alm, H. (2009). Applying the “Team player” approach on car design. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 5639 LNAI (pp. 349–357). doi:10.1007/978-3-642-02728-4_37.
Dekker, S. W. A., & Woods, D. D. (2002). MABA-MABA or abracadabra? progress on human-automation co-ordination. Cognition, Technology and Work, 4(4), 240–244. doi:10.1007/s101110200022.
de Winter, J. C., Happee, R., Martens, M. H., & Stanton, N. A. (2014). Effects of adaptive cruise control and highly automated driving on workload and situation awareness: A review of the empirical evidence. Transportation Research Part F: Traffic Psychology and Behaviour, 27, 196–217. doi:10.1016/j.trf.2014.06.016.
Endsley, M. R., & Kiris, E. O. (1995). Situation awareness global assessment technique (SAGAT) TRACON air traffic control version user’s guide. Technical report: Texas Tech University, Lubbock.
Endsley, M. R., & Kiris, E. O. (1995). The out-of-the-loop performance problem and level of control in automation. Human Factors: The Journal of the Human Factors and Ergonomics Society, 37(2), 381–394. doi:10.1518/001872095779064555.
Flemisch, F., Heesen, M., Hesse, T., Kelsch, J., Schieben, A., & Beller, J. (2012). Towards a dynamic balance between humans and automation: Authority, ability, responsibility and control in shared and cooperative control situations. Cognition, Technology and Work, 14(1), 3–18. doi:10.1007/s10111-011-0191-6.
Flemisch, F. O., Bengler, K., Bubb, H., Winner, H., & Bruder, R. (2014). Towards cooperative guidance and control of highly automated vehicles: H-Mode and Conduct-by-Wire. Ergonomics, 57(3), 343–60. doi:10.1080/00140139.2013.869355.
Franz, B., Kauer, M., Bruder, R., & Geyer, S. (2012). PieDrive—a new driver-vehicle interaction concept for maneuver-based driving. In 2012 IEEE intelligent vehicles symposium workshops (IV).
Gold, C., & Bengler, K. (2014). Taking over control from highly automated vehicles. Advances in Human Aspects of Transportation: Part II, 8, 64.
Gold, C., Berisha, I., & Bengler, K. (2015). Utilization of drivetime—performing non-driving related tasks while driving highly automated. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 59(1), 1666–1670. doi:10.1177/1541931215591360.
Gold, C., Damböck, D., Lorenz, L., & Bengler, K. (2013). "Take over!" How long does it take to get the driver back into the loop? Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 57(1), 1938–1942. doi:10.1177/1541931213571433.
Gold, C., Korber, M., Lechner, D., & Bengler, K. (2016). Taking over control from highly automated vehicles in complex traffic situations: The role of traffic density. Human Factors, 58(4), 642–652. doi:10.1177/0018720816634226.
Gold, C., Lorenz, L., Damböck, D., & Bengler, K. (2013). Partially automated driving as a fallback level of high automation. 6. Tagung Fahrerassistenzsysteme. Der Weg zum automatischen Fahren 28(29.11), 2013.
Gouy, M., Wiedemann, K., Stevens, A., Brunett, G., & Reed, N. (2014). Driving next to automated vehicle platoons: How do short time headways influence non-platoon drivers’ longitudinal control? Transportation Research Part F: Traffic Psychology and Behaviour, 27, 264–273. doi:10.1016/j.trf.2014.03.003.
Grah, T., Epp, F., Wuchse, M., Meschtscherjakov, A., Gabler, F., Steinmetz, A., & Tscheligi, M. (2015). Dorsal haptic display: A shape-changing car seat for sensory augmentation of rear obstacles. In Proceedings of the 7th international conference on automotive user interfaces and interactive vehicular applications, AutomotiveUI ’15 (pp. 305–312). New York, NY, USA: ACM. doi:10.1145/2799250.2799281.
Haeuslschmid, R., Schnurr, L., Wagner, J., & Butz, A. (2015). Contact-analog warnings on windshield displays promote monitoring the road scene. In Proceedings of the 7th international conference on automotive user interfaces and interactive vehicular applications, AutomotiveUI ’15 (pp. 64–71). New York, NY, USA: ACM. doi:10.1145/2799250.2799274.
Helldin, T., Falkman, G., Riveiro, M., & Davidsson, S. (2013). Presenting system uncertainty in automotive uis for supporting trust calibration in autonomous driving. In Proceedings of the 5th international conference on automotive user interfaces and interactive vehicular applications, AutomotiveUI ’13 (pp. 210–217). New York, NY, USA: ACM. doi:10.1145/2516540.2516554.
Ho, C., & Spence, C. (2005). Assessing the effectiveness of various auditory cues in capturing a driver’s visual attention. Journal of Experimental Psychology: Applied, 11(3), 157–174. doi:10.1037/1076-898X.11.3.157.
Ho, C., & Spence, C. (2008). The multisensory driver: Implications for ergonomic car interface design. Ashgate, Aldershot [u.a.]
Hoc, J. M. (2000). From human-machine interaction to human-machine cooperation. Ergonomics, 43(7), 833–843.
Hoc, J. M. (2001). Towards a cognitive approach to human-machine cooperation in dynamic situations. International Journal of Human-Computer Studies, 54(4), 509–540. doi:10.1006/ijhc.2000.0454.
Hoc, J. M., Young, M. S., & Blosseville, J. M. (2009). Cooperation between drivers and automation: Implications for safety. Theoretical Issues in Ergonomics Science, 10(2), 135–160. doi:10.1080/14639220802368856.
Hoff, K. A., & Bashir, M. (2015). Trust in automation: Integrating empirical evidence on factors that influence trust. Human Factors, 57(3), 407–434. doi:10.1177/0018720814547570.
Klein, G., Woods, D., Bradshaw, J., Hoffman, R., & Feltovich, P. (2004). Ten challenges for making automation a “Team Player” in joint human-agent activity. IEEE Intelligent Systems, 19(06), 91–95. doi:10.1109/MIS.2004.74.
Koo, J., Kwac, J., Ju, W., Steinert, M., Leifer, L., & Nass, C. (2015). Why did my car just do that? Explaining semi-autonomous driving actions to improve driver understanding, trust, and performance. International Journal on Interactive Design and Manufacturing (IJIDeM), 9(4), 269–275. doi:10.1007/s12008-014-0227-2.
Körber, M., Gold, C., Lechner, D., & Bengler, K. (2016). The influence of age on the take-over of vehicle control in highly automated driving. Transportation Research Part F: Traffic Psychology and Behaviour, 39, 19–32. doi:10.1016/j.trf.2016.03.002.
Körber, M., Weißgerber, T., Blaschke, C., Farid, M., & Kalb, L. (2015). Prediction of take-over time in highly automated driving by two psychometric tests. DYNA, 82(193), 195–201. doi:10.15446/dyna.v82n193.53496.
Kunz, F., Nuss, D., Wiest, J., Deusch, H., Reuter, S., Gritschneder, F., Scheel, A., Stübler, M., Bach, M., Hatzelmann, P., Wild, C., & Dietmayer, K. (2015). Autonomous driving at Ulm university: A modular, robust, and sensor-independent fusion approach. In 2015 IEEE intelligent vehicles symposium (IV) (pp. 666–673). doi:10.1109/IVS.2015.7225761.
Large, D. R., & Burnett, G. E. (2014). Letter from the Editors the effect of different navigation voices on trust and attention while using in-vehicle navigation systems. Journal of Safety Research, 49, 69–75. doi:10.1016/j.jsr.2014.02.009.
Lee, J. D., See, K. A., & City, I. (2004). Trust in automation: Designing for appropriate reliance. Human Factors, 46(1), 50–80. doi:10.1518/hfes.46.1.50_30392.
Li, L., Werber, K., Calvillo, C.F., Dinh, K.D., Guarde, A., & König, A. (2014). Multi-sensor soft-computing system for driver drowsiness detection. In V. Snášel, P. Krömer, M. Köppen, G. Schaefer (Eds.), Soft Computing in Industrial Applications: Proceedings of the 17th online world conference on soft computing in industrial applications (pp. 129–140). Springer International Publishing, Cham (2014). doi:10.1007/978-3-319-00930-8_12.
Löcken, A., Heuten, W., & Boll, S. (2015). Supporting lane change decisions with ambient light. In Proceedings of the 7th international conference on automotive user interfaces and interactive vehicular applications, AutomotiveUI ’15 (pp. 204–211). New York, NY, USA: ACM. doi:10.1145/2799250.2799259.
Lorenz, L., Kerschbaum, P., & Schumann, J. (2014). Designing take over scenarios for automated driving: How does augmented reality support the driver to get back into the loop? Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 58(1), 1681–1685. doi:10.1177/1541931214581351.
Lu, Z., & de Winter, J. C. (2015). A review and framework of control authority transitions in automated driving. Procedia Manufacturing, 3, 2510–2517. doi:10.1016/j.promfg.2015.07.513.
Mark, G., & Kobsa, A. (2005). The effects of collaboration and system transparency on CIVE usage: An empirical study and model. Presence, 14(1), 60–80. doi:10.1162/1054746053890279.
Martens, M. H., & van den Beukel, A. P. (2013). The road to automated driving: Dual mode and human factors considerations. In 16th International IEEE Conference on Intelligent Transportation Systems—(ITSC 2013) (pp. 2262–2267). doi:10.1109/ITSC.2013.6728564.
Melcher, V., Rauh, S., Diederichs, F., Widlroither, H., & Bauer, W. (2015). Take-over requests for automated driving. Procedia Manufacturing, 3, 2867–2873. doi:10.1016/j.promfg.2015.07.788.
Merat, N., Jamson, A. H., Lai, F. C., Daly, M., & Carsten, O. M. (2014). Transition to manual: Driver behaviour when resuming control from a highly automated vehicle. Transportation Research Part F: Traffic Psychology and Behaviour, 27, 274–282. doi:10.1016/j.trf.2014.09.005.
Muir, B. M., & Moray, N. (1996). Trust in automation. Part II. Experimental studies of trust and human intervention in a process control simulation. Ergonomics, 39(3), 429–460. doi:10.1080/00140139608964474.
Naujoks, F., Mai, C., & Neukum, A. (2014). The effect of urgency of take-over requests during highly automated driving under distraction conditions. In Proceedings of the 5th international conference on applied human factors and ergonomics AHFE 2014.
Naujoks, F., Purucker, C., Neukum, A., Wolter, S., & Steiger, R. (2015). Controllability of partially automated driving functions—Does it matter whether drivers are allowed to take their hands off the steering wheel? Transportation Research Part F: Traffic Psychology and Behaviour, 35, 185–198. doi:10.1016/j.trf.2015.10.022.
Norman, D. A. (1990). The ‘Problem’ with automation: Inappropriate feedback and interaction, not ‘Over-Automation’. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 327(1241), 585–593. doi:10.1098/rstb.1990.0101.
Parasuraman, R., & Riley, V. (1997). Humans and automation: Use, misuse, disuse, abuse. Human Factors: The Journal of the Human Factors and Ergonomics Society, 39(2), 230–253. doi:10.1518/001872097778543886.
Payre, W., Cestac, J., & Delhomme, P. (2016). Fully automated driving: Impact of trust and practice on manual control recovery. Human Factors, 58(2), 229–241. doi:10.1177/0018720815612319.
Petermann-Stock, I., Hackenberg, L., Muhr, T., Josten, J., & Eckstein, L. (2015). “Bitte übernehmen Sie das Fahren!”: Ein multimodaler Vergleich von Übernahmestrategien. AAET.
Petermann-Stock, I., Hackenberg, L., Muhr, T., & Mergl, C. (2013). Wie lange braucht der Fahrer? Eine Analyse zu Übernahmezeiten aus verschiedenen Nebentätigkeiten während einer hochautomatisierten Staufahrt. 6. Tagung Fahrerassistenzsysteme. Der Weg zum automatischen Fahren.
Petermeijer, S. M., de Winter, J. C. F., & Bengler, K. J. (2016). Vibrotactile displays: A survey with a view on highly automated driving. IEEE Transactions on Intelligent Transportation Systems, 17(4), 897–907. doi:10.1109/TITS.2015.2494873.
Politis, I., Brewster, S., & Pollick, F. (2013). Evaluating multimodal driver displays of varying urgency. In Proceedings of the 5th international conference on automotive user interfaces and interactive vehicular applications, AutomotiveUI ’13 (pp. 92–99). New York, NY, USA: ACM. doi:10.1145/2516540.2516543.
Politis, I., Brewster, S., & Pollick, F. (2015). Language-based multimodal displays for the handover of control in autonomous cars. In Proceedings of the 7th international conference on automotive user interfaces and interactive vehicular applications, AutomotiveUI ’15 (pp. 3–10). New York, NY, USA: ACM. doi:10.1145/2799250.2799262.
Politis, I., Brewster, S.A., & Pollick, F. (2014). Evaluating multimodal driver displays under varying situational urgency. In Proceedings of the 32Nd annual ACM conference on human factors in computing systems, CHI ’14 (pp. 4067–4076). New York, NY, USA: ACM. doi:10.1145/2556288.2556988.
Radlmayr, J., Gold, C., Lorenz, L., Farid, M., & Bengler, K. (2014). How traffic situations and non-driving related tasks affect the take-over quality in highly automated driving. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 58(1), 2063–2067. doi:10.1177/1541931214581434.
Rauch, N., Gradenegger, B., & Krüger, H. P. (2009). Darf ich oder darf ich nicht? Situationsbewusstsein im Umgang mit Nebenaufgaben während der Fahrt. Zeitschrift für Arbeitswissenschaft, 63(1), 3–16.
Riener, A., Ferscha, A., & Aly, M. (2009). Heart on the road: HRV analysis for monitoring a driver’s affective state. In Proceedings of the 1st international conference on automotive user interfaces and interactive vehicular applications, AutomotiveUI ’09 (pp. 99–106). New York, NY, USA: ACM. doi:10.1145/1620509.1620529.
SAE International: Automated Driving Levels of Driving Automation are Defined in new SAE International Standard J3016 (2014).
Sahayadhas, A., Sundaraj, K., & Murugappan, M. (2012). Detecting driver drowsiness based on sensors: A review. Sensors (Basel, Switzerland) 12(12), 16,937–16,953. doi:10.3390/s121216937.
Shladover, S. E. (2016). The Truth about "Self-Driving" cars. Scientific American, 314(6), 52–57. doi:10.1038/scientificamerican0616-52.
Skottke, E. M., Debus, G., Wang, L., & Huestegge, L. (2014). Carryover effects of highly automated convoy driving on subsequent manual driving performance. Human Factors: The Journal of the Human Factors and Ergonomics Society, 56(7), 1272–1283. doi:10.1177/0018720814524594.
Stanton, N. A. (2016). Distributed situation awareness. Theoretical Issues in Ergonomics Science, 17(1), 1–7. doi:10.1080/1463922X.2015.1106615.
Telpaz, A., Rhindress, B., Zelman, I., & Tsimhoni, O. (2015). Haptic seat for automated driving: preparing the driver to take control effectively. In Proceedings of the 7th international conference on automotive user interfaces and interactive vehicular applications, AutomotiveUI ’15 (pp. 23–30). New York, NY, USA: ACM. doi:10.1145/2799250.2799267.
Toffetti, A., Wilschut, E., Martens, M., Schieben, A., Rambaldini, A., Merat, N., et al. (2009). CityMobil. Transportation Research Record: Journal of the Transportation Research Board, 2110, 1–8. doi:10.3141/2110-01.
Trimble, T.E., Bishop, R., Morgan, J.F., & Blanco, M. (2014). Human factors evaluation of level 2 and level 3 automated driving concepts: Past research, state of automation technology, and emerging system concepts.
Walch, M., Lange, K., Baumann, M., & Weber, M. (2015). Autonomous driving: investigating the feasibility of car-driver handover assistance. In Proceedings of the 7th international conference on automotive user interfaces and interactive vehicular applications, AutomotiveUI ’15 (pp. 11–18). New York, NY, USA: ACM. doi:10.1145/2799250.2799268.
Walker, G. H., Stanton, N. A., & Salmon, P. (2016). Trust in vehicle technology. International Journal of Vehicle Design, 70(2), 157–182. doi:10.1504/IJVD.2016.074419.
Waytz, A., Heafner, J., & Epley, N. (2014). The mind in the machine: Anthropomorphism increases trust in an autonomous vehicle. Journal of Experimental Social Psychology, 52, 113–117. doi:10.1016/j.jesp.2014.01.005.
Young, M., Stanton, N., & Harris, D. (2007). Driving automation: Learning from aviation about design philosophies. International Journal of Vehicle Design, 45(3), 323–338. doi:10.1504/IJVD.2007.014908.
Zeeb, K., Buchner, A., & Schrauf, M. (2015). What determines the take-over time? An integrated model approach of driver take-over after automated driving. Accident; Analysis and Prevention, 78, 212–221. doi:10.1016/j.aap.2015.02.023.
Zeeb, K., Buchner, A., & Schrauf, M. (2016). Is take-over time all that matters? The impact of visual-cognitive load on driver take-over quality after conditionally automated driving. Accident; Analysis and Prevention, 92, 230–239. doi:10.1016/j.aap.2016.04.002.
Ziegler, J., Bender, P., Schreiber, M., Lategahn, H., Strauss, T., Stiller, C., et al. (2014). Making Bertha drive—An autonomous journey on a historic route. IEEE Intelligent Transportation Systems Magazine, 6(2), 8–20. doi:10.1109/MITS.2014.2306552.
Zimmermann, M., Bauer, S., Lütteken, N., Rothkirch, I. M., & Bengler, K. J. (2014). Acting together by mutual control: Evaluation of a multimodal interaction concept for cooperative driving. In 2014 international conference on collaboration technologies and systems (CTS) (pp. 227–235). doi:10.1109/CTS.2014.6867569.
Zimmermann, M., & Bengler, K. (2013). A multimodal interaction concept for cooperative driving. In 2013 IEEE intelligent vehicles symposium (IV) (pp. 1285–1290). doi:10.1109/IVS.2013.6629643.
Acknowledgements
The authors thank the Carl-Zeiss Foundation for the partial funding of this work.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this chapter
Cite this chapter
Walch, M., Mühl, K., Kraus, J., Stoll, T., Baumann, M., Weber, M. (2017). From Car-Driver-Handovers to Cooperative Interfaces: Visions for Driver–Vehicle Interaction in Automated Driving. In: Meixner, G., Müller, C. (eds) Automotive User Interfaces. Human–Computer Interaction Series. Springer, Cham. https://doi.org/10.1007/978-3-319-49448-7_10
Download citation
DOI: https://doi.org/10.1007/978-3-319-49448-7_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-49447-0
Online ISBN: 978-3-319-49448-7
eBook Packages: Computer ScienceComputer Science (R0)