Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

DAPPFC: Density-Based Affinity Propagation for Parameter Free Clustering

  • Conference paper
  • First Online:
Advanced Data Mining and Applications (ADMA 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10086))

Included in the following conference series:

Abstract

In the clustering algorithms, it is a bottleneck to identify clusters with arbitrarily. In this paper, a new method DAPPFC (density-based affinity propagation for parameter free clustering) is proposed. Firstly, it obtains a group of normalized density from the unsupervised clustering results. Then, the density is used for density clustering for multiple times. Finally, the multiple-density clustering results undergo a two-stage synthesis to achieve the final clustering result. The experiment shows that the proposed method does not require the user’s intervention, and it can also get an accurate clustering result in the presence of arbitrarily shaped clusters with a minimal additional computation cost.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rodriguez, A., Laio, A.: Clustering by fast search and find of density peaks. Science 344(6191), 1492–1496 (2014)

    Article  Google Scholar 

  2. Seife, C.: Big data: the revolution is digitized. Nature 518(7540), 480–481 (2015)

    Article  Google Scholar 

  3. Aggarwal, C.C., Reddy, C.K. (eds.): Data Clustering: Algorithms and Applications. CRC Press, Boca Raton (2013)

    Google Scholar 

  4. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: KDD, vol. 96, no. 34, pp. 226–231 (1996)

    Google Scholar 

  5. Dueck, D., Frey, B.J.: Non-metric affinity propagation for unsupervised image categorization. In: IEEE 11th International Conference on Computer Vision, pp. 1–8 (2007)

    Google Scholar 

  6. Dueck, D., Frey, Brendan, J., Jojic, N., Jojic, V., Giaever, G., Emili, A., Musso, G., Hegele, R.: Constructing treatment portfolios using affinity propagation. In: Vingron, M., Wong, L. (eds.) RECOMB 2008. LNCS, vol. 4955, pp. 360–371. Springer, Heidelberg (2008). doi:10.1007/978-3-540-78839-3_31

    Chapter  Google Scholar 

  7. Givoni, I.E., Frey, B.J.: Semi-supervised affinity propagation with instance-level constraints. In: AISTATS, pp. 161–168 (2009)

    Google Scholar 

  8. Xu, X.Z., Ding, S.F., Shi, Z.Z., Zhu, H.: Optimizing radial basis function neural network based on rough sets and affinity propagation clustering algorithm. J. Zhejiang University Science C 13(2), 131–138 (2012)

    Article  Google Scholar 

  9. Fujiwara, Y., Irie, G., Kitahara, T.: Fast algorithm for affinity propagation. In: IJCAI Proceedings-International Joint Conference on Artificial Intelligence, vol. 22, no. 3, p. 2238 (2011)

    Google Scholar 

  10. Wang, K., Zheng, J.: Fast algorithm of affinity propagation clustering under given number of clusters. Comput. Syst. Appl. 7, 207–209 (2010)

    Google Scholar 

  11. Liu, X.Y., Fu, H.: A fast affinity propagation clustering algorithm. Shandong Daxue Xuebao(GongxueBan) 41(4), 20–23 (2011)

    MathSciNet  Google Scholar 

  12. Feng, X.L., Yu, H.T.: Research on density-insensitive affinity propagation clustering algorithm. Jisuanji Gongcheng/Computer Engineering, 38(2) (2012)

    Google Scholar 

  13. Chen, X., Liu, W., Qiu, H., Lai, J.: APSCAN: a parameter free algorithm for clustering. Pattern Recogn. Lett. 32, 973–986 (2011)

    Article  Google Scholar 

  14. Frey, B.J., Dueck, D.: Clustering by passing message between data points. Science 315, 972–976 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gionis, A., Mannila, H., Tsaparas, P.: Clustering aggregation. ACM Trans. Knowl. Discov. Data 1(1), 1–30 (2007)

    Article  Google Scholar 

  16. Zahn, C.T.: Graph-theoretical methods for detecting and describing gestalt clusters. IEEE Trans. Comput. 100(1), 68–86 (1971)

    Article  MATH  Google Scholar 

  17. Veenman, C.J., Reinders, M.J.T., Backer, E.: A maximum variance cluster algorithm. IEEE Trans. Pattern Anal. Mach. Intell. 24(9), 1273–1280 (2002)

    Article  Google Scholar 

  18. Chang, H., Yeung, D.Y.: Robust path-based spectral clustering. Pattern Recogn. 41(1), 191–203 (2008)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Fund of China (61472039), National Key Research and Development Plan of China (2016YFC0803000, 2016YFB0502604), and Specialized Research Fund for the Doctoral Program of Higher Education (20121101110036).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuliang Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Yuan, H., Wang, S., Yu, Y., Zhong, M. (2016). DAPPFC: Density-Based Affinity Propagation for Parameter Free Clustering. In: Li, J., Li, X., Wang, S., Li, J., Sheng, Q. (eds) Advanced Data Mining and Applications. ADMA 2016. Lecture Notes in Computer Science(), vol 10086. Springer, Cham. https://doi.org/10.1007/978-3-319-49586-6_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49586-6_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49585-9

  • Online ISBN: 978-3-319-49586-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics