Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

How Can Reasoner Performance of ABox Intensive Ontologies Be Predicted?

  • Conference paper
  • First Online:
Semantic Technology (JIST 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10055))

Included in the following conference series:

Abstract

Reasoner performance prediction of ontologies in OWL 2 language has been studied so far from different dimensions. One key aspect of these studies has been the prediction of how much time a particular task for a given ontology will consume. Several approaches have adopted different machine learning techniques to predict time consumption of ontologies already. However, these studies focused on capturing general aspects of the ontologies (i.e., mainly the complexity of their TBoxes), while paying little attention to ABox intensive ontologies. To address this issue, in this paper, we propose to improve the representativeness of ontology metrics by developing new metrics which focus on the ABox features of ontologies. Our experiments show that the proposed metrics contribute to overall prediction accuracy for all ontologies in general without causing side-effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://sid.cps.unizar.es/projects/OWL2Predictions/JIST16/.

  2. 2.

    Adapted from Natural Language Processing, basically, it consists in adding 1 to all the witnessed values of the concept expressions in the ontology.

  3. 3.

    https://zenodo.org/record/10791.

  4. 4.

    You can find the code of the OntologyChopper at http://sid.cps.unizar.es/projects/OWL2Predictions/JIST16/.

References

  1. Fokoue, A., Meneguzzi, F., Sensoy, M., Pan, J.Z.: Querying linked ontological data through distributed summarization. In: Proceedings of the 26th AAAI Conference on Artificial Intelligence (AAAI2012) (2011)

    Google Scholar 

  2. Bobed, C., Yus, R., Bobillo, F., Mena, E.: Semantic reasoning on mobile devices: do androids dream of efficient reasoners? J. Web Semant. 35(4), 167–183 (2015). ISSN 1570–8268, https://dx.doi.org/10.1016/j.websem.2015.09.002

    Article  Google Scholar 

  3. Burton-Jones, A., Storey, V.C., Sugumaran, V., Ahluwalia, P.: A semiotic metrics suite for assessing the quality of ontologies. Data Knowl. Eng. 55, 84–102 (2005)

    Article  Google Scholar 

  4. Dentler, K., Cornet, R., ten Teije, A., de Keizer, N.: Comparison of reasoners for large ontologies in the OWL 2 EL profile. Semant. Web 2, 71–87 (2011)

    Google Scholar 

  5. Glimm, B., Horrocks, I., Motik, B., Stoilos, G., Wang, Z.: Hermit: an OWL 2 reasoner. J. Autom. Reasoning 53, 245–269 (2014)

    Article  MATH  Google Scholar 

  6. Grau, B.C., Horrocks, I., Motik, B., Parsia, B., Patel-Schneider, P.F., Sattler, U.: OWL 2: the next step for OWL. J. Web Sem. 6, 309–322 (2008)

    Article  Google Scholar 

  7. Guclu, I., Li, Y.-F., Pan, J.Z., Kollingbaum, M.J.: Predicting energy consumption of ontology reasoning over mobile devices. In: Groth, P., Simperl, E., Gray, A., Sabou, M., Krötzsch, M., Lecue, F., Flöck, F., Gil, Y. (eds.) ISWC 2016. LNCS, vol. 9981, pp. 289–304. Springer, Heidelberg (2016). doi:10.1007/978-3-319-46523-4_18

    Chapter  Google Scholar 

  8. Hogan, A., Pan, J.Z., Polleres, A., Ren, Y.: Scalable OWL 2 reasoning for linked data. In: Polleres, A., d’Amato, C., Arenas, M., Handschuh, S., Kroner, P., Ossowski, S., Patel-Schneider, P. (eds.) Reasoning Web 2011. LNCS, vol. 6848, pp. 250–325. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23032-5_5

    Chapter  Google Scholar 

  9. Jolliffe, I.: Principal Component Analysis. Wiley StatsRef: Statistics Reference Online (2002)

    Google Scholar 

  10. Kang, Y.-B., Li, Y.-F., Krishnaswamy, S.: Predicting reasoning performance using ontology metrics. In: Cudré-Mauroux, P., et al. (eds.) ISWC 2012. LNCS, vol. 7649, pp. 198–214. Springer, Heidelberg (2012). doi:10.1007/978-3-642-35176-1_13

    Chapter  Google Scholar 

  11. Kang, Y.-B., Li, Y.-F., Krishnaswamy, S.: A rigorous characterization of classification performance - a tale of four reasoners. In: ORE (2012)

    Google Scholar 

  12. Kang, Y.-B., Pan, J.Z., Krishnaswamy, S., Sawangphol, W., Li, Y.-F.: How long will it take? Accurate prediction of ontology reasoning performance. In: AAAI (2014)

    Google Scholar 

  13. Li, Y.-F., Kennedy, G., Ngoran, F., Wu, P., Hunter, J.: An ontology-centric architecture for extensible scientific data management systems. Future Gener. Comput. Syst. 29, 641–653 (2013)

    Article  Google Scholar 

  14. Matentzoglu, N., Bail, S., Parsia, B.: A corpus of OWL DL ontologies. In: Proceedings DL13 (2013)

    Google Scholar 

  15. Maynard, D., Peters, W., Li, Y.: Metrics for evaluation of ontology-based information extraction (2006)

    Google Scholar 

  16. Pan, J.Z., Ren, Y., Zhao, Y.: Tractable approximate deduction for OWL. Artificial Intelligence 235, 95–155

    Google Scholar 

  17. Pan, J.Z., Staab, S., Amann, U., Ebert, J., Zhao, Y.: Ontology-Driven Software Development. Springer Publishing Company, Incorporated, Ontology-Driven Software (2012)

    MATH  Google Scholar 

  18. Pan, J.Z., Thomas, E., Ren, Y., Taylor., S.: Tractable fuzzy and crisp reasoning in ontology applications. In: IEEE Computational Intelligence Magazine (2012)

    Google Scholar 

  19. Ren, Y., Pan, J.Z., Lee, K.: Optimising parallel ABox reasoning of EL ontologies. In: Description Logics (2012)

    Google Scholar 

  20. Ren, Y., Pan, J.Z., Zhao, Y.: Soundness preserving approximation for TBox reasoning. In: AAAI (2010)

    Google Scholar 

  21. Romero, A.A., Grau, B.C., Horrocks, I.: More: modular combination of OWL reasoners for ontology classification. In: SEMWEB (2012)

    Google Scholar 

  22. Sazonau, V., Sattler, U., Brown, G.: Predicting performance of OWL reasoners: locally or globally? In: Principles of Knowledge Representation and Reasoning: Proceedings of the Fourteenth International Conference, KR 2014, Vienna, Austria, July 20–24, 2014 (2014)

    Google Scholar 

  23. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: a practical OWL-DL reasoner. J. Web Sem. 5, 51–53 (2007)

    Article  Google Scholar 

  24. Thomas, E., Pan, J.Z., Ren, Y.: TrOWL: tractable OWL 2 reasoning infrastructure. In: Aroyo, L., Antoniou, G., Hyvönen, E., Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.) ESWC 2010. LNCS, vol. 6089, pp. 431–435. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13489-0_38

    Chapter  Google Scholar 

  25. Tsarkov, D., Horrocks, I.: FaCT++ description logic reasoner: system description. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 292–297. Springer, Heidelberg (2006). doi:10.1007/11814771_26

    Chapter  Google Scholar 

  26. Yao, H., Orme, A.M., Etzkorn, L.: Cohesion metrics for ontology design and application. J. Comput. Sci. 1, 107–113 (2005)

    Article  Google Scholar 

  27. Yuan Ren, J.Z.P., Lee, K.: Optimising parallel ABox reasoning of el ontologies. In: Proceedings of the 25th International Workshop on Description Logics (DL2012) (2012)

    Google Scholar 

  28. Zhang, H., Li, Y.-F., Tan, H.B.K.: Measuring design complexity of semantic web ontologies. J. Syst. Softw. 83, 803–814 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the EC Marie Curie K-Drive project (286348), the CICYT project (TIN2013-46238-C4-4-R) and the DGA-FSE project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeff Z. Pan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Guclu, I., Bobed, C., Pan, J.Z., Kollingbaum, M.J., Li, YF. (2016). How Can Reasoner Performance of ABox Intensive Ontologies Be Predicted?. In: Li, YF., et al. Semantic Technology. JIST 2016. Lecture Notes in Computer Science(), vol 10055. Springer, Cham. https://doi.org/10.1007/978-3-319-50112-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50112-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50111-6

  • Online ISBN: 978-3-319-50112-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics