Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Robustness of Rotation Invariant Descriptors for Texture Classification

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10072))

Included in the following conference series:

Abstract

In this paper, we present an evaluation of texture descriptors’ robustness when interpolation methods are applied over rotated images. We propose a novel rotation invariant texture descriptor called Sampled Local Mapped Pattern Magnitude (SLMP_M) and we compare it with well-known published texture descriptors. The compared descriptors are the Completed Local Binary Pattern (CLBP), and two Discrete Fourier Transform (DFT)-based methods called the Local Ternary Pattern DFT and the Improved Local Ternary Pattern DFT. Experiments were performed on the Kylberg Sintorn Rotation Dataset, a database of natural textures that were rotated using hardware and computational procedures. Five interpolation methods were investigated: Lanczos, B-spline, Cubic, Linear and Nearest Neighbor with nine directions. Experimental results show that our proposed method makes a robust texture discrimination, overcoming traditional texture descriptors and works better in different interpolations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tan, T.N.: Rotation invariant texture features and their use in automatic script identification. IEEE Trans. Pattern Anal. Mach. Intell. 20, 751–756 (1998)

    Article  Google Scholar 

  2. Han, J., Ma, K.K.: Rotation-invariant and scale-invariant gabor features for texture image retrieval. Image Vis. Comput. 25, 1474–1481 (2007)

    Article  Google Scholar 

  3. Sharma, M., Ghosh, H.: Histogram of gradient magnitudes: a rotation invariant texture-descriptor. In: IEEE International Conference on Image Processing (ICIP), pp. 4614–4618 (2015)

    Google Scholar 

  4. Dharmagunawardhana, C., Mahmoodi, S., Bennett, M., Niranjan, M.: Rotation invariant texture descriptors based on gaussian markov random fields for classification. Pattern Recogn. Lett. 69, 15–21 (2016)

    Article  Google Scholar 

  5. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24, 971–987 (2002)

    Article  MATH  Google Scholar 

  6. Nosaka, R., Fukui, K.: Hep-2 cell classification using rotation invariant co-occurrence among local binary patterns. Pattern Recogn. 47, 2428–2436 (2014)

    Article  Google Scholar 

  7. Zhao, G., Ahonen, T., Matas, J., Pietikainen, M.: Rotation-invariant image and video description with local binary pattern features. IEEE Trans. Image Process. 21, 1465–1477 (2012)

    Article  MathSciNet  Google Scholar 

  8. Guo, Z., Zhang, L., Zhang, D.: Rotation invariant texture classification using lbp variance (lbpv) with global matching. Pattern Recogn. 43, 706–719 (2010)

    Article  MATH  Google Scholar 

  9. Guo, Z., Zhang, L., Zhang, D.: A completed modeling of local binary pattern operator for texture classification. IEEE Trans. Image Process. 19, 1657–1663 (2010)

    Article  MathSciNet  Google Scholar 

  10. Kylberg, G., Sintorn, I.M.: On the influence of interpolation method on rotation invariance in texture recognition. EURASIP J. Image Video Process. 2016, 1–12 (2016)

    Article  Google Scholar 

  11. Jin, H., Liu, Q., Lu, H., Tong, X.: Face detection using improved LBP under Bayesian framework. In: Third International Conference on Image and Graphics (ICIG 2004), pp. 306–309 (2004)

    Google Scholar 

  12. Fernández, A., Ghita, O., González, E., Bianconi, F., Whelan, P.F.: Evaluation of robustness against rotation of LBP, ccr and ILBP features in granite texture classification. Mach. Vis. Appl. 22, 913–926 (2011)

    Article  Google Scholar 

  13. Ferraz Jr., C.T., O.P., Gonzaga, A.: Feature description based on center-symmetric local mapped patterns. In: Proceedings of the 29th Annual ACM Symposium on Applied Computing, SAC 2014, pp. 39–44. ACM, New York (2014)

    Google Scholar 

  14. Ferraz, C., Pereira, O., Rosa, M.V., Gonzaga, A.: Object recognition based on bag of features and a new local pattern descriptor. Int. J. Pattern Recogn. Artif. Intell. 28 (2014). 1455010

    Google Scholar 

  15. Ferraz, C.T., Manzato, M.G., Gonzaga, A.: Complex indoor scene classification based on a new feature descriptor. In: Proceedings of the International Conference on Pattern Recognition Systems (ICPRS 2016) (2016)

    Google Scholar 

  16. Vieira, R.T., Oliveira Chierici, C.E., Ferraz, C.T., Gonzaga, A.: Local fuzzy pattern: a new way for micro-pattern analysis. In: Yin, H., Costa, J.A.F., Barreto, G. (eds.) IDEAL 2012. LNCS, vol. 7435, pp. 602–611. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32639-4_73

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Sao Paulo Research Foundation (FAPESP) (Grant Process #2015/20812-5) and the Coordination for the Improvement of Higher Education Personnel (CAPES) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raissa Tavares Vieira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Vieira, R.T., Negri, T.T., Gonzaga, A. (2016). Robustness of Rotation Invariant Descriptors for Texture Classification. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2016. Lecture Notes in Computer Science(), vol 10072. Springer, Cham. https://doi.org/10.1007/978-3-319-50835-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50835-1_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50834-4

  • Online ISBN: 978-3-319-50835-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics