Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Real-Time Detection and Tracking of Multiple Humans from High Bird’s-Eye Views in the Visual and Infrared Spectrum

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10072))

Included in the following conference series:

Abstract

We propose a real-time system to detect and track multiple humans from high bird’s-eye views. First, we present a fast pipeline to detect humans observed from large distances by efficiently fusing information from a visual and infrared spectrum camera. The main contribution of our work is a new tracking approach. Its novelty lies in online learning of an objectness model which is used for updating a Kalman filter. We show that an adaptive objectness model outperforms a fixed model. Our system achieves a mean tracking loop time of 0.8 ms per human on a 2 GHz CPU which makes real time tracking of multiple humans possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Yilmaz, A., Javed, O., Shah, M.: Object tracking: a survey. ACM Comput. Surv. (CSUR) 38, 13 (2006)

    Article  Google Scholar 

  2. Stalder, S., Grabner, H., Gool, L.: Dynamic objectness for adaptive tracking. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012. LNCS, vol. 7726, pp. 43–56. Springer, Heidelberg (2013). doi:10.1007/978-3-642-37431-9_4

    Chapter  Google Scholar 

  3. Liang, P., Pang, Y., Liao, C., Mei, X., Ling, H.: Adaptive objectness for object tracking, IEEE (2015)

    Google Scholar 

  4. Alexe, B., Deselaers, T., Ferrari, V.: What is an object? In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 73–80. IEEE (2010)

    Google Scholar 

  5. Cheng, M.M., Zhang, Z., Lin, W.Y., Torr, P.: BING: binarized normed gradients for objectness estimation at 300fps. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3286–3293 (2014)

    Google Scholar 

  6. Yang, J., Yan, R., Hauptmann, A.G.: Adapting SVM classifiers to data with shifted distributions. In: Seventh IEEE International Conference on Data Mining Workshops (ICDMW 2007), pp. 69–76. IEEE (2007)

    Google Scholar 

  7. Crammer, K., Dekel, O., Keshet, J., Shalev-Shwartz, S., Singer, Y.: Online passive-aggressive algorithms. J. Mach. Learn. Res. 7, 551–585 (2006)

    MathSciNet  MATH  Google Scholar 

  8. Kalman, R.E.: A new approach to linear filtering and prediction problems. J. Basic Eng. 82, 35–45 (1960)

    Article  Google Scholar 

  9. Cuevas, E.V., Zaldivar, D., Rojas, R.: Kalman filter for vision tracking (2005)

    Google Scholar 

  10. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 1, pp. 886–893. IEEE (2005)

    Google Scholar 

  11. Wu, Z., Fuller, N., Theriault, D., Betke, M.: A thermal infrared video benchmark for visual analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 201–208 (2014)

    Google Scholar 

  12. Davis, J.W., Keck, M.A.: A two-stage template approach to person detection in thermal imagery. WACV/MOTION 5, 364–369 (2005)

    Google Scholar 

  13. Davis, J.W., Sharma, V.: Background-subtraction using contour-based fusion of thermal and visible imagery. Comput. Vis. Image Underst. 106, 162–182 (2007)

    Article  Google Scholar 

  14. Vempati, A.S., Agamennoni, G., Stastny, T., Siegwart, R.: Victim detection from a fixed-wing UAV: experimental results. In: Bebis, G. (ed.) ISVC 2015. LNCS, vol. 9474, pp. 432–443. Springer, Heidelberg (2015). doi:10.1007/978-3-319-27857-5_39

    Chapter  Google Scholar 

  15. Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comput. Vis. 47, 7–42 (2002)

    Article  MATH  Google Scholar 

  16. Vidas, S., Lakemond, R., Denman, S., Fookes, C., Sridharan, S., Wark, T.: A mask-based approach for the geometric calibration of thermal-infrared cameras. IEEE Trans. Instrum. Meas. 61, 1625–1635 (2012)

    Article  Google Scholar 

  17. Dollar, P., Wojek, C., Schiele, B., Perona, P.: Pedestrian detection: an evaluation of the state of the art. IEEE Trans. Pattern Anal. Mach. Intell. 34, 743–761 (2012)

    Article  Google Scholar 

Download references

Acknowledgment

The research leading to these results has received funding from the European Commission’s Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 600958 (SHERPA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julius Kümmerle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Kümmerle, J., Hinzmann, T., Vempati, A.S., Siegwart, R. (2016). Real-Time Detection and Tracking of Multiple Humans from High Bird’s-Eye Views in the Visual and Infrared Spectrum. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2016. Lecture Notes in Computer Science(), vol 10072. Springer, Cham. https://doi.org/10.1007/978-3-319-50835-1_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50835-1_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50834-4

  • Online ISBN: 978-3-319-50835-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics