Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Automatic Medical Image Multilingual Indexation Through a Medical Social Network

  • Chapter
  • First Online:
Prediction and Inference from Social Networks and Social Media

Part of the book series: Lecture Notes in Social Networks ((LNSN))

  • 1028 Accesses

Abstract

Medical social networking sites enabled multimedia content sharing in large volumes, by allowing physicians and patients to upload their medical images. These images are diagnosed and commented, in different languages, by several specialists instantly. Moreover, it is necessary to employ new techniques, in order to automatically extract information and analyze knowledge from the huge number of comments expressing specialist’s analyzes and recommendations. For this reason, we propose a terms-based method in order to extract the relevant terms and words which can describe the medical image. Furthermore, significant extracted terms and keywords will be used later to index medical images, in order to facilitate their search through the social network site. In fact, we need to take account, in our work, that existing comments are expressed in different languages. So, it is essential to implement a multilingual indexation method to eliminate the ambiguity which will be the cause of the effectiveness’s reduction of the search function. In order to palliate this situation, we propose a multilingual mixed approach which concentrates on algorithms based on statistical methods and external multilingual semantic resources, in order to handle and to cover different languages. The use of external resources, such as semantic multilingual thesaurus, can improve the efficiency of the indexing process. Our proposed method can be applied in different languages. It is also essential to implement an auto-correction of the medical terms by using a medical dictionary. The correction of terms helps to eliminate the ambiguity which will be the cause of the reduction in the frequency of appearance of such terms. The correction of terms has taken into consideration that terms are presented in different languages. Our study is validated by a set of experiments and a comparison study with some existing approaches in literature. Experimental results have indicated that the proposed system has a superior performance compared to other systems, which is satisfactory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://iom.nationalacademies.org/

  2. 2.

    http://corp.yougov.com/healthcare/

  3. 3.

    http://www.sobercircle.com

  4. 4.

    http://www.sparkpeople.com/

  5. 5.

    https://www.fitocracy.com/

  6. 6.

    https://www.dacadoo.com/

  7. 7.

    http://www.asklepios.com/

  8. 8.

    http://www.acc.org/

  9. 9.

    http://www.diabspace.com/

  10. 10.

    http://www.parlonscancer.ca/

  11. 11.

    http://www.renaloo.com/

  12. 12.

    http://www.rxspace.com/

  13. 13.

    https://metamap.nlm.nih.gov/

  14. 14.

    http://ai.stanford.edu/~rion/parsing/minipar_viz.html

  15. 15.

    http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/

  16. 16.

    http://www.lexilogos.com/medical_dictionnaire.htm

  17. 17.

    http://www.nzdl.org/Kea/download.html

  18. 18.

    http://perso.univ-lyon2.fr/~maniezf/Corpus/Corpus_medical_FR_CRTT.htm

References

  1. Zhi W, Wenwu Z, Peng C, Lifeng S, Shiqiang Y (2013) Social media recommendation. In: Social media retrieval. Computer communications and networks. Springer, Berlin. doi:10.1007/978-1-4471-4555-4 3

    Google Scholar 

  2. Doganay S (2014) Healthcare social networks: new choices for doctors, Patients. Available from http://www.information.com/healthcare/patient-tools/healthcare-social-networks-new-choices-for-doctors-patients/d/d-id/1234884

  3. Franklin V, Greene S (2007) Sweet talk: a text messaging support system. J Diabetes Nurs 11(1):22–26

    Google Scholar 

  4. Grenier C (2003) The role of intermediate subject to understand the structuring of an organizational network of actors and technology case of a care network. In: Proceedings of the 9th conference of the association information and management, Grenoble

    Google Scholar 

  5. Messaoudi A, Bouslimi R, Akaichi J (2013) Indexing medical images based on collaborative experts reports. Int J Comput Appl (0975-887) 70(5):1–9

    Google Scholar 

  6. Daniel RG, Liza SR, Jennifer LK (2013) Dangers and opportunities for social media in medicine. Clin Obstet Gynecol 56(3). doi:10.1097/GRF.0b013e318297dc38

    Google Scholar 

  7. Feldman DL (2012) Medical social media networks: communicating across the virtual highway. Q J Health Care Practice Risk Manag Infocus 18(1):2–5

    Google Scholar 

  8. Maisonnasse L, Gaussier E, Chevallet J-P (2009) Combination of semantic analysis to search for medical information. In: RISE (Research Information semantics) within the INFORSID’ conference, Toulouse

    Google Scholar 

  9. Gaussier E, Maissonnasse L, Chevallet JP (2008) Multiplying concept sources for graph modeling. In: CLEF 2007. LNCS 5152 proceedings, pp 585–592

    Google Scholar 

  10. Lacoste C, Chevallet JP, Lim j-h, Wei X, Raccoceanu D, Hoang D, Vuillenemot F (2006) Ipal knowledge-based medical image retrieval in imageCLEFmed 2006. In: Working notes for the CLEF 2006 workshop, Alicante

    Google Scholar 

  11. Neil S, Velte T, Jie H, Wei Z, Clement Y (2007) Knowledge intensive conceptual retrieval and passage extraction of biomedical literature. In: 30th annual 66 international ACM SIGIR conference on research and development in information retrieval

    Google Scholar 

  12. Li L-J, Fei-Fei L (2009) Optimol: automatic online picture collection via incremental model learning. Int J Comput Vis 88(2):147–168

    Article  Google Scholar 

  13. Collins B, Deng J, Li K, Fei-Fei L (2008) Towards scalable dataset construction: an active learning approach. In: Proceedings of the European conference on computer vision

    Google Scholar 

  14. Mihalcea R, Leong C-W (2009) Towards communicating simple sentences using pictorial representations. Mach Transl 22:153–173

    Article  Google Scholar 

  15. Von Ahn L, Dabbish L (2004) Labeling images with a computer game. In: Proceedings of the SIGCHI conference on human factors in computing systems, Vienna. ACM, New York, pp 319–326

    Google Scholar 

  16. Truran M, Goulding J, Ashman H (2005) Co-active intelligence for image retrieval. In Proc. of the 13th annual ACM international conference on multimedia, Hilton. ACM, New York, pp 547–550

    Google Scholar 

  17. Li Q, Lu SCY (2008) Collaborative tagging applications and approaches. IEEE Multimed 15(3):14–21

    Article  Google Scholar 

  18. Shevade B, Sundaram H, Xie L (2007) Modeling personal and social network context for event annotation in images. In: Proceedings of the 7th ACM/IEEE-CS joint conference on digital libraries, Vancouver, BC. ACM, New York, pp 127–134

    Google Scholar 

  19. Stone Z, Zickler T, Darrell T (2008) Autotagging facebook: social network context improves photo annotation. In: Proceedings of the 1st IEEE workshop on internet vision (CVPR 2008), p 8

    Google Scholar 

  20. Bouslimi R, Messaoudi A, Akaichi J (2013) Using a bag of words for automatic medical image annotation with a latent semantic. Int J Artif Intell Appl 4(3):51

    Google Scholar 

  21. Barnard K, Forsyth D (2007) Learning the semantics of words and pictures. In: Proceedings of international conference on computer vision

    Google Scholar 

  22. Jeon J, Lavrenko V, Manmatha R (2007) Automatic image annotation and retrieval using cross-media relevance models. In: Proceedings of the ACM SIGIR conference on research and development in information retrieval

    Google Scholar 

  23. Makadia A, Pavlovic V, Kumar S (2008) A new baseline for image annotation. In: Proceedings of the European conference on computer vision

    Book  Google Scholar 

  24. Wang C, Blei David, Fei-Fei Li (2009) Simultaneous image classification and annotation. In: Proceedings of the IEEE conference on computer vision and pattern recognition

    Google Scholar 

  25. Zunjarwad A, Sundaram H, Xie L (2007) Contextual wisdom: social relations and correlations for multimedia event annotation. In: Proceedings of the 15th international conference on multimedia, Augsburg. ACM, New York, pp 615–624

    Chapter  Google Scholar 

  26. Manning CD, Raghavan P, SchĂĽtze H (2008) Introduction to information retrieval. Cambridge University Press, New York

    Book  MATH  Google Scholar 

  27. Fuming S, Yong G, Dongxia W, Xueming W (2010). A collaborative approach for image annotation. In: PSIVT, 2010, image and video technology, Pacific-Rim symposium on, image and video technology, Pacific-Rim symposium on 2010, pp 192–196. doi:10.1109/PSIVT.2010.39

    Google Scholar 

  28. Sun F, Ge Y, Wang D, Wang X (2010) A collaborative approach for image annotation. In: Proceedings of the PSIVT’10. IEEE Computer Society 2010, Singapore, pp 192–196. ISBN:978-0-7695-4285-0

    Google Scholar 

  29. Kanishcheva O, Angelova G (2015) A pipeline approach to image auto-tagging refinement. In: BCI ’15 proceedings of the 7th Balkan conference on informatics conference, New York, NY. doi:10.1145/2801081.2801108

    Google Scholar 

  30. Bouslimi R, Akaichi J (2015) Automatic medical image annotation on social network of physician collaboration. Netw Model Anal Health Inform Bioinforma 4:10. doi:10.1007/s13721-015-0082-5

    Article  Google Scholar 

  31. Harrathi F (2010) Extraction de concepts et de relations entre concepts Ă  partir des documents multilingues: approche statistique et ontologique. PhD Thesis, INSA Lyon

    Google Scholar 

  32. Gong J, Sun S (2011) Individual doctor recommendation model on medical social network. In: Proceedings of the 7th international conference on advanced data mining and applications (ADMA’11)

    Google Scholar 

  33. Almansoori W, Zarour O, Jarada TN, Karampales P, Rokne J, Alhajj R (2011) Applications of social network construction and analysis in the medical referral process. In: Proceedings of the 2011 IEEE ninth international conference on dependable, autonomic and secure computing (DASC’11)

    Google Scholar 

  34. Xie Y, Chen Z, Cheng Y, Zhang K, Agrawal A, Liao WK, Choudhary A (2013) Detecting and tracking disease outbreaks by mining social media data. In: Proceedings of the twenty-third international joint conference on artificial intelligence (IJCAI’13)

    Google Scholar 

  35. Li J (2014) Data protection in healthcare social networks. J IEEE Softw 31(1):46–53

    Article  MathSciNet  Google Scholar 

  36. AMA Policy (2012) Professionalism in the use of social media. American Medical Association, 2012 Annual meeting. http://www.ama-assn.org/ama/pub/meeting/professionalism-social-media.shtml

  37. Levenshtein VI (1966) Binary codes capable of correcting deletions, insertions and reversals. Sov Phys Dokl 10:707–710

    MathSciNet  MATH  Google Scholar 

  38. Jaccard P (1901) Distribution de la flore alpine dans le Bassin des Drouces et dans quelques regions voisines. Bull Soc Vaud Sci Nat 37(140):241–272

    Google Scholar 

  39. Heasoo H, Lauw Hady W, Getoor L, Ntoulas A (2012) Organizing user search histories. IEEE Trans J Mag Knowl Data Eng 24:912–925

    Article  Google Scholar 

  40. Navarro G (2001) A guided tour to approximate string matching. ACM Comput Surv 33(1):31–88

    Article  Google Scholar 

  41. Frakes WB, Fox CJ (2003) Strength and similarity of affix removal stemming algorithms. In: Newsletter of ACM SIGIR forum homepage archive, vol 37(1), New York, pp 26–30

    Google Scholar 

  42. Jones K (1972) A statistical interpretation of term specificity and its application in retrieval. J Doc 28(1):11–21

    Article  Google Scholar 

  43. Paukkeri M, Honkela T (2010) Likey: unsupervised language-independent keyphrase extraction. In: Proceedings of the 5th international workshop on semantic evaluation, Uppsala, Sweden, pp 162–165

    Google Scholar 

  44. NLM (2009) NLM unified medical language system fact sheet. Available from: http://www.nlm.nih.gov/pubs/factsheets/umls.html.Cited23/04/2009

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mouhamed Gaith Ayadi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ayadi, M.G., Bouslimi, R., Akaichi, J., Hedhli, H. (2017). Automatic Medical Image Multilingual Indexation Through a Medical Social Network. In: Kawash, J., Agarwal, N., Ă–zyer, T. (eds) Prediction and Inference from Social Networks and Social Media. Lecture Notes in Social Networks. Springer, Cham. https://doi.org/10.1007/978-3-319-51049-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51049-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51048-4

  • Online ISBN: 978-3-319-51049-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics