Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Deep Spectral-Based Shape Features for Alzheimer’s Disease Classification

  • Conference paper
  • First Online:
Spectral and Shape Analysis in Medical Imaging (SeSAMI 2016)

Abstract

Alzheimer’s disease (AD) and mild cognitive impairment (MCI) are the most prevalent neurodegenerative brain diseases in elderly population. Recent studies on medical imaging and biological data have shown morphological alterations of subcortical structures in patients with these pathologies. In this work, we take advantage of these structural deformations for classification purposes. First, triangulated surface meshes are extracted from segmented hippocampus structures in MRI and point-to-point correspondences are established among population of surfaces using a spectral matching method. Then, a deep learning variational auto-encoder is applied on the vertex coordinates of the mesh models to learn the low dimensional feature representation. A multi-layer perceptrons using softmax activation is trained simultaneously to classify Alzheimer’s patients from normal subjects. Experiments on ADNI dataset demonstrate the potential of the proposed method in classification of normal individuals from early MCI (EMCI), late MCI (LMCI), and AD subjects with classification rates outperforming standard SVM based approach.

Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ranginwala, N.A., Hynan, L.S., Weiner, M.F., White, C.L.I.: Clinical criteria for the diagnosis of Alzheimer disease: still good after all these years. Am. J. Geriatr. Psychiatry 16(5), 384–388 (2008)

    Article  Google Scholar 

  2. Petersen, R., Smith, G., Waring, S., Ivnik, R., Tangalos, E., Kokmen, E.: Mild cognitive impairment: clinical characterization and outcome. Arch. Neurol. 56(3), 303–308 (1999)

    Article  Google Scholar 

  3. Du, A.T., Schuff, N., et al.: Magnetic resonance imaging of the entorhinal cortex and hippocampus in mild cognitive impairment and Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry 71, 441–447 (2001)

    Article  Google Scholar 

  4. Wyman, B., Harvey, D., Crawford, K., Bernstein, M., Carmichael, O., Cole, P., Crane, P., Decarli, C., Fox, N., Gunter, J., Hill, D., Killiany, R., Pachai, C., Schwarz, A., Schuff, N., Senjem, M., Suhy, J., Thompson, P., Weiner, M., Jack, C.: Standardization of analysis sets for reporting results from ADNI MRI data. Alzheimer’s Dement. 9(3), 332–337 (2013)

    Article  Google Scholar 

  5. Davatzikos, C., Fan, Y., Wu, X., Shen, D., Resnick, S.: Alzheimer’s disease via pattern classification of MRI. Neurobiol. Aging 29(4), 514–523 (2008)

    Article  Google Scholar 

  6. Bengio, Y.: Learning deep architectures for AI. Found. Trends Mach. Learn. 2(1), 1–127 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. In: International Conference on Learning Representations (ICLR) (2013)

    Google Scholar 

  8. Lombaert, H., Criminisi, A., Ayache, N.: Spectral forests: learning of surface data, application to cortical parcellation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 547–555. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24553-9_67

    Chapter  Google Scholar 

  9. Lombaert, H., Grady, L., Polimeni, J.R., Cheriet, F.: FOCUSR: feature oriented correspondence using spectral regularization – a method for precise surface matching. IEEE Trans. Pattern Anal. Mach. Intell. 35(9), 2143–2160 (2013)

    Article  Google Scholar 

  10. Lombaert, H., Sporring, J., Siddiqi, K.: Diffeomorphic spectral matching of cortical surfaces. In: Gee, J.C., Joshi, S., Pohl, K.M., Wells, W.M., Zöllei, L. (eds.) IPMI 2013. LNCS, vol. 7917, pp. 376–389. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38868-2_32

    Chapter  Google Scholar 

  11. Wachinger, C., Reuter, M.: Domain adaptation for Alzheimer’s disease diagnostics. NeuroImage 139, 470–479 (2016)

    Article  Google Scholar 

  12. Suk, H.-I., Shen, D.: Deep learning-based feature representation for AD/MCI classification. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8150, pp. 583–590. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40763-5_72

    Chapter  Google Scholar 

  13. Grady, L.J., Polimeni, J.R.: Discrete Calculus. Springer, Heidelberg (2010)

    Book  MATH  Google Scholar 

  14. Shakeri, M., Lombaert, H., Datta, A.N., Oser, N., Ltourneau-Guillon, L., Lapointe, L.V., Martin, F., Malfait, D., Tucholka, A., Lippe, S., Kadoury, S.: Statistical shape analysis of subcortical structures using spectral matching. Comput. Med. Imaging Graph. 52, 58–71 (2016)

    Article  Google Scholar 

  15. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press, Inc., New York (1995)

    MATH  Google Scholar 

  16. Jack, C., Bernstein, M., Fox, N., et al.: The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. J. Magn. Reson. Imaging: JMRI 27(4), 685–691 (2008)

    Article  Google Scholar 

  17. Patenaude, B., Smith, S.M., Kennedy, D.N., Jenkinson, M.: A Bayesian model of shape and appearance for subcortical brain segmentation. NeuroImage 56, 907–922 (2011)

    Article  Google Scholar 

  18. Goryawala, M., et al.: Inclusion of neuropsychological scores in atrophy models improves diagnostic classification of Alzheimer’s disease and mild cognitive impairment. Comput. Intell. Neurosci. 2015, 56 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

Funding was provided by the Canada Research Chairs and from the CHU Sainte-Justine Hospital’s Research Center, Montreal, Canada.

ADNI data collection and sharing for this project was funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: AbbVie, Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics.

The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer’s Disease Cooperative Study at the University of California, San Diego. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Mahsa Shakeri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Shakeri, M., Lombaert, H., Tripathi, S., Kadoury, S., for the Alzheimer’s Disease Neuroimaging Initiative. (2016). Deep Spectral-Based Shape Features for Alzheimer’s Disease Classification. In: Reuter, M., Wachinger, C., Lombaert, H. (eds) Spectral and Shape Analysis in Medical Imaging. SeSAMI 2016. Lecture Notes in Computer Science(), vol 10126. Springer, Cham. https://doi.org/10.1007/978-3-319-51237-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51237-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51236-5

  • Online ISBN: 978-3-319-51237-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics