Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Volume Representation of Parenchymatous Organs by Volumetric Self-organizing Deformable Model

  • Conference paper
  • First Online:
Spectral and Shape Analysis in Medical Imaging (SeSAMI 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10126))

Abstract

This paper proposes a new method for describing parenchymatous organs by the set of volumetric primitives with simple shapes. The proposed method is based on our modified Self-organizing Deformable Model (mSDM) which maps an object surface model onto a target surface with no foldovers. By extending mSDM to apply to organ volume models, the proposed method, volumetric SDM (vSDM), finds the one-to-one correspondence between the volume model and its target volume. During the mapping, vSDM preserves geometrical properties of the original model while mapping internal structures of the model onto their corresponding primitives inside of the target volume. Owing to these characteristics, vSDM enables to obtain a new volume representation of organ volume models which simultaneously (1) represents by simple primitives the shapes of the whole organ and its internal structures and (2) describes the relationship among the external surface and internal structures of the organ.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Athanasiadis, T., Fudos, I., Nikou, C., Stamati, V.: Feature-based 3D morphing based on geometrically constrained sphere mapping optimization. In: Proceedings of 2010 ACM Symposium on Applied Computing, pp. 1258–1265. ACM (2010)

    Google Scholar 

  2. Dehne, F.: Algorithms and Data Structures: Third Workshop, Montreal, Canada, 11–13 August 1993, WADS 1993. LNCS, vol. 709. Springer, Heidelberg (1993)

    Google Scholar 

  3. Hu, J., Zou, G.J., Hua, J.: Volume-preserving mapping and registration for collective data visualization. IEEE Trans. Vis. Comput. Graph. 20(12), 2664–2673 (2014)

    Article  Google Scholar 

  4. Lam, K.C., Gu, X., Lui, L.M.: Genus-one surface registration via Teichmüller extremal mapping. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8675, pp. 25–32. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10443-0_4

    Google Scholar 

  5. Li, X., Xu, H., Wan, S., Yin, Z., Yu, W.: Feature-aligned harmonic volumetric mapping using MFS. Comput. Graph. 34(3), 242–251 (2010)

    Article  Google Scholar 

  6. Miyauchi, S., Morooka, K., Tsuji, T., Miyagi, Y., Fukuda, T., Kurazume, R.: Area- and angle-preserving parameterization for vertebra surface mesh. In: Yao, J., Glocker, B., Klinder, T., Li, S. (eds.) Recent Advances in Computational Methods and Clinical Applications for Spine Imaging. LNCVB, vol. 20, pp. 187–198. Springer, Heidelberg (2015). doi:10.1007/978-3-319-14148-0_16

    Chapter  Google Scholar 

  7. Miyauchi, S., Morooka, K., Miyagi, Y., Fukuda, T., Tsuji, T., Kurazume, R.: Tissue surface model mapping onto arbitrary target surface based on self-organizing deformable model. In: 2013 Fourth International Conference on Emerging Security Technologies (EST), pp. 79–82. IEEE (2013)

    Google Scholar 

  8. Miyauchi, S., Morooka, K., Tsuji, T., Miyagi, Y., Fukuda, T., Kurazume, R.: Angle- and volume-preserving mapping based on modified self-organizing deformable model. In: 23rd International Conference on Pattern Recognition (2016)

    Google Scholar 

  9. Miyauchi, S., Morooka, K., Tsuji, T., Miyagi, Y., Fukuda, T., Kurazume, R.: A method for mapping tissue volume model onto target volume using volumetric self-organizing deformable model. In: SPIE Medical Imaging, p. 97842Z. International Society for Optics and Photonics (2016)

    Google Scholar 

  10. Morooka, K., Nagahashi, H.: Self-organizing deformable model: a new method for fitting mesh model to given object surface. In: Bebis, G., Boyle, R., Koracin, D., Parvin, B. (eds.) ISVC 2005. LNCS, vol. 3804, pp. 151–158. Springer, Heidelberg (2005). doi:10.1007/11595755_19

    Chapter  Google Scholar 

  11. Sederberg, T.W., Parry, S.R.: Free-from deformation of solid geometric models. Proc. ACM SIGGRAPH Comput. Graph. 20(4), 151–160 (1986)

    Article  Google Scholar 

  12. Shi, R., Zeng, W., Su, Z., Damasio, H., Lu, Z., Wang, Y., Yau, S.T., Gu, X.: Hyperbolic harmonic mapping for constrained brain surface registration. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 2531–2538 (2013)

    Google Scholar 

Download references

Acknowledgment

This work was supported by Grant-in-Aid for JSPS Research Fellow 16J03878 and JSPS KAKENHI 16K00243.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoko Miyauchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Miyauchi, S., Morooka, K., Tsuji, T., Miyagi, Y., Fukuda, T., Kurazume, R. (2016). Volume Representation of Parenchymatous Organs by Volumetric Self-organizing Deformable Model. In: Reuter, M., Wachinger, C., Lombaert, H. (eds) Spectral and Shape Analysis in Medical Imaging. SeSAMI 2016. Lecture Notes in Computer Science(), vol 10126. Springer, Cham. https://doi.org/10.1007/978-3-319-51237-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51237-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51236-5

  • Online ISBN: 978-3-319-51237-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics