Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Order-Preserving 1-String Representations of Planar Graphs

  • Conference paper
  • First Online:
SOFSEM 2017: Theory and Practice of Computer Science (SOFSEM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10139))

  • 1229 Accesses

Abstract

This paper considers 1-string representations of planar graphs that are order-preserving in the sense that the order of crossings along the curve representing vertex v is the same as the order of edges in the clockwise order around v in the planar embedding. We show that this does not exist for all planar graphs (not even for all planar 3-trees), but show existence for some subclasses of planar partial 3-trees. In particular, for outer-planar graphs it can be order-preserving and outer-string in the sense that all ends of strings are on the outside of the representation.

T. Biedl—Research supported by NSERC.

M. Derka—was supported by the Vanier CGS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    One could distinguish this further by whether both ends must be on the contour or whether one end suffices. All our outer-string constructions have both ends on the contour, while all our impossibility-results hold even if only one end is required to be on the contour, so the distinction does not matter for the results in our paper.

  2. 2.

    Once we fix how to break up the cyclic order at all vertices, there is a construction that describes the order-preserving 1-string representation as a graph H and so that it can be realized if and only if H is planar. Hence the problem is interesting only if we keep this choice.

  3. 3.

    We have not been able to find a direct reference for this, but it follows for example from the works of Chaplick et al. [8] or with an iterative approach similar to the 6-sided contact representations in [1].

References

  1. Alam, M.J., Biedl, T., Felsner, S., Gerasch, A., Kaufmann, M., Kobourov, S.G.: Linear-time algorithms for hole-free rectilinear proportional contact graph representations. Algorithmica 67(1), 3–22 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Biedl, T., Derka, M.: \(1\)-string \({B}_1\)-VPG-representations of planar partial 3-trees and some subclasses. In: Canadian Conference on Computational Geometry (CCCG 2015), pp. 37–42 (2015)

    Google Scholar 

  3. Biedl, T., Derka, M.: \(1\)-string \({B}_2\)-VPG representations of planar graphs. J. Comput. Geom. 7(2), 191–215 (2016)

    Google Scholar 

  4. Biedl, T., Derka, M.: Order-preserving 1-string representations of planar graphs (2016). CoRR abs/1609.08132

    Google Scholar 

  5. Cabello, S., Jejčič, M.: Refining the hierarchies of classes of geometric intersection graphs (2016). CoRR abs/1603.08974

    Google Scholar 

  6. Chalopin, J., Gonçalves, D.: Every planar graph is the intersection graph of segments in the plane: extended abstract. In: ACM Symposium on Theory of Computing (STOC 2009), pp. 631–638 (2009)

    Google Scholar 

  7. Chalopin, J., Gonçalves, D., Ochem, P.: Planar graphs have 1-string representations. Discrete Comput. Geom. 43(3), 626–647 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chaplick, S., Kobourov, S.G., Ueckerdt, T.: Equilateral L-contact graphs. In: Brandstädt, A., Jansen, K., Reischuk, R. (eds.) WG 2013. LNCS, vol. 8165, pp. 139–151. Springer, Heidelberg (2013). doi:10.1007/978-3-642-45043-3_13

    Chapter  Google Scholar 

  9. Chaplick, S., Ueckerdt, T.: Planar graphs as VPG-graphs. J. Graph Algorithms Appl. 17(4), 475–494 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Felsner, S., Knauer, K.B., Mertzios, G.B., Ueckerdt, T.: Intersection graphs of L-shapes and segments in the plane. Discrete Appl. Math. 206, 48–55 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Francis, M.C., Lahiri, A.: VPG and EPG bend-numbers of Halin graphs (2015). CoRR abs/1505.06036

    Google Scholar 

  12. de Fraysseix, H., de Mendez, P.O., Pach, J.: Representation of planar graphs by segments. Intuitive Geom. 63, 109–117 (1991)

    MathSciNet  MATH  Google Scholar 

  13. Govindan, R., Langston, M.A., Yan, X.: Approximating the pathwidth of outerplanar graphs. Inf. Process. Lett. 68(1), 17–23 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Keil, J.M., Mitchell, J.S., Pradhan, D., Vatshelle, M.: An algorithm for the maximum weight independent set problem on outerstring graphs. Comput. Geom. 60, 19–25 (2016)

    Article  MathSciNet  Google Scholar 

  15. Kobourov, S.G., Ueckerdt, T., Verbeek, K.: Combinatorial and geometric properties of planar Laman graphs. In: SIAM Symposium on Discrete Algorithms (SODA 2013), pp. 1668–1678 (2013)

    Google Scholar 

  16. Kratochvíl, J.: String graphs II recognizing string graphs is NP-hard. J. Comb. Theor. Ser. B 52(1), 67–78 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kratochvíl, J., Matoušek, J.: Intersection graphs of segments. J. Comb. Theor. Ser. B 62(2), 289–315 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  18. Middendorf, M., Pfeiffer, F.: The max clique problem in classes of string-graphs. Discrete Math. 108, 365–372 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  19. Middendorf, M., Pfeiffer, F.: Weakly transitive orientations, hasse diagrams and string graphs. Discrete Math. 111, 393–400 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  20. Schaefer, M., Sedgwick, E., Štefankovič, D.: Recognizing string graphs is in NP. J. Comput. Syst. Sci. 67(2), 365–380 (2003)

    Article  MATH  Google Scholar 

  21. Scheinerman, E.R.: Intersection classes and multiple intersection parameters of graphs. Ph.D. thesis, Princeton University (1984)

    Google Scholar 

  22. Wessel, W., Pöschel, R.: On circle graphs. In: Sachs, H. (ed.) Graphs, Hypergraphs and Applications, pp. 207–210. Teubner, Leipzig (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Derka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Biedl, T., Derka, M. (2017). Order-Preserving 1-String Representations of Planar Graphs. In: Steffen, B., Baier, C., van den Brand, M., Eder, J., Hinchey, M., Margaria, T. (eds) SOFSEM 2017: Theory and Practice of Computer Science. SOFSEM 2017. Lecture Notes in Computer Science(), vol 10139. Springer, Cham. https://doi.org/10.1007/978-3-319-51963-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51963-0_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51962-3

  • Online ISBN: 978-3-319-51963-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics