Abstract
Among numerous research studies devoted to art markets, very little attention is given to the quality of the data. Availability of a decent amount of observations is a problem in many fields; the art market is no different, especially in Poland. Therefore, it constitutes a severe obstacle in explaining the market behaviour. The use of Linked Open Data and Machine Learning can pave the way to improve the quality of data and enrich results of other art market research as a consequence, such as building indices. This paper is an outline of the method for combining such fields and summarises effort already made to achieve that.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Plattner, S.: A most ingenious paradox: the market for contemporary fine art. Am. Anthropolog. 100(2), 482–493 (1998)
Zaveri, A., Rula, A., Maurino, A., Pietrobon, R., Lehmann, J., Auer, S.: Quality assessment for linked data: a survey. Semant. Web 7(1), 63–93 (2015)
Wand, Y., Wang, R.Y.: Anchoring data quality dimensions in ontological foundations. Commun. ACM 39(11), 86–95 (1996)
Pipino, L.L., Lee, Y.W., Wang, R.Y.: Data quality assessment. Commun. ACM 45(4), 211–218 (2002)
Borowski, K., Kosmala, W.: The contemporary art market in Poland - paintings. J. Manag. Financ. Sci. 17(15), 63–80 (2014)
Witkowska, D., Kompa, K.: Constructing hedonic art price indexes for the Polish painting market using direct and indirect approaches. AESTIMO, The IEB Int. J. Financ. 10, 2–25 (2015)
Witkowska, D., Lucińska, A.: Hedoniczny indeks cen obrazów sprzedanych na polskim rynku aukcyjnym w latach 2007–2013. Zeszyty Naukowe Uniwersytetu Szczecińskiego. Finanse. Rynki finansowe. Ubezpieczenia (75 Rynek kapitałowy: skuteczne inwestowanie), pp. 515–527 (2015)
Ginsburgh, V., Mei, J., Moses, M.: The computation of prices indices. In: Handbook of the Economics of Art and Culture, vol. 1. pp. 947–979. Elsevier (2006)
Mei, J., Moses, M.: Art as an Investment and the Underperformance of Masterpieces (2002)
Renneboog, L., Spaenjers, C.: Buying beauty: on prices and returns in the art market. Manag. Sci., 1–33, April 2012
Locatelli-Biey, M., Zanola, R.: The sculpture market: an adjacent year regression index. J. Cult. Econ. 26, 65–78 (2002)
Kräussl, R., Wiehenkamp, C.: A call on art investments. Rev. Deriv. Res. 15(1), 1–23 (2011)
Hartig, O., Bizer, C., Freytag, J.-C.: Executing SPARQL queries over the web of linked data. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 293–309. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04930-9_19
Paulheim, H., Ristoski, P., Mitichkin, E., Bizer, C.: Data mining with background knowledge from the web (2014)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR abs/1409.1556 (2014)
Elgammal, A.M., Saleh, B.: Quantifying creativity in art networks. CoRR abs/1506.00711 (2015)
Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems research. MIS Q. 28(1), 75–105 (2004)
Filipiak, D., Filipowska, A.: Towards data-oriented analysis of the art market. Financ. Internet Q. 12(1), 21–31 (2016)
Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P.N., Hellmann, S., Morsey, M., van Kleef, P., Auer, S., Bizer, C.: DBpedia - a large-scale, multilingual knowledge base extracted from wikipedia. Semant. Web J. 6, 167–195 (2014)
Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: cluster computing with working sets. In: Proceedings of the 2nd USENIX Conference on Hot Topics in Cloud Computing, HotCloud 2010, p. 10. USENIX Association, Berkeley (2010)
Filipiak, D., Filipowska, A.: DBpedia in the art market. In: Abramowicz, W. (ed.) BIS 2015. LNBIP, vol. 228, pp. 321–331. Springer, Heidelberg (2015). doi:10.1007/978-3-319-26762-3_28
Filipiak, D., Wȩcel, K., Filipowska, A.: Semantic annotation to support description of the art market. In: 11th International Conference on Semantic Systems, SEMANTiCS 2015, vol. 1481, pp. 51–54. CEUR-WS (2015)
Filipiak, D., Agt-Rickauer, H., Hentschel, C., Filipowska, A., Sack, H.: Quantitative analysis of art market using ontologies, named entity recognition and machine learning: a case study. In: Abramowicz, W., Alt, R., Franczyk, B. (eds.) BIS 2016. LNBIP, vol. 255, pp. 79–90. Springer, Heidelberg (2016). doi:10.1007/978-3-319-39426-8_7
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Filipiak, D., Filipowska, A. (2017). Improving the Quality of Art Market Data Using Linked Open Data and Machine Learning. In: Abramowicz, W., Alt, R., Franczyk, B. (eds) Business Information Systems Workshops. BIS 2016. Lecture Notes in Business Information Processing, vol 263. Springer, Cham. https://doi.org/10.1007/978-3-319-52464-1_39
Download citation
DOI: https://doi.org/10.1007/978-3-319-52464-1_39
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-52463-4
Online ISBN: 978-3-319-52464-1
eBook Packages: Business and ManagementBusiness and Management (R0)