Abstract
Graphs (1-skeletons) of Traveling-Salesman-related polytopes have attracted a lot of attention. Pedigree polytopes are extensions of the classical Symmetric Traveling Salesman Problem polytopes (Arthanari 2000) whose graphs contain the TSP polytope graphs as spanning subgraphs (Arthanari 2013). Unlike TSP polytopes, Pedigree polytopes are not “symmetric”, e.g., their graphs are not vertex transitive, not even regular.
We show that in the graph of the pedigree polytope, the quotient minimum degree over number of vertices tends to 1 as the number of cities tends to infinity.
D.O. Theis—Supported by the Estonian Research Council, ETAG (Eesti Teadusagentuur), through PUT Exploratory Grant #620, and by the European Regional Development Fund through the Estonian Center of Excellence in Computer Science, EXCS.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
We speak of vertices of the pedigree graph and nodes of the cycles, to limit confusion.
- 2.
The reason why we use this notion of “infinite cycle” is pure convenience. It does not add complexity, but it makes many of statements and proofs less cumbersome. Indeed, instead of an infinite cycle, it is ok to just use a cycle whose length M is longer than all the lengths occuring in the particular argument. So instead of “let A be an infinite cycle, and consider \(A_k\), \(A_\ell \), \(A_n\)” you have to say “let M be a large enough integer, \(A_M\) a cycle of length M, and \(A_k\), \(A_\ell \), \(A_n\) sub-cycles of \(A_M\)”. All the little arguments (e.g., Fact 8 below) have to be done in the same way.
References
Aguilera, N., Katz, R., Tolomei, P.: Vertex adjacencies in the set covering polyhedron. arXiv preprint arXiv:1406.6015 (2014)
Arthanari, T.S.: On pedigree polytopes and hamiltonian cycles. Discret. Math. 306, 1474–1792 (2006)
Arthanari, T.S.: Study of the pedigree polytope and a sufficiency condition for nonadjacency in the tour polytope. Discret. Optim. 10(3), 224–232 (2013). http://dx.doi.org/10.1016/j.disopt.2013.07.001
Arthanari, T.S., Usha, M.: An alternate formulation of the symmetric traveling salesman problem and its properties. Discret. Appl. Math. 98(3), 173–190 (2000)
Fiorini, S., Kaibel, V., Pashkovich, K., Theis, D.O.: Combinatorial bounds on nonnegative rank and extended formulations. Discret. Math. 313(1), 67–83 (2013)
Grötschel, M., Padberg, M.W.: Polyhedral theory. In: Lawler, E.L., Lenstra, J.K., Kan, A., Shmoys, D.B. (eds.) The Traveling Salesman Problem. A Guided Tour of Combinatorial Optimization, chap. 8, pp. 251–306. Wiley (1985)
Kaibel, V.: Low-dimensional faces of random 0/1-polytopes. In: Bienstock, D., Nemhauser, G. (eds.) IPCO 2004. LNCS, vol. 3064, pp. 401–415. Springer, Heidelberg (2004). doi:10.1007/978-3-540-25960-2_30
Kaibel, V., Pashkovich, K., Theis, D.O.: Symmetry matters for sizes of extended formulations. SIAM J. Discret. Math. 26(3), 1361–1382 (2012)
Kaibel, V., Remshagen, A.: On the graph-density of random 0/1-polytopes. In: Arora, S., Jansen, K., Rolim, J.D.P., Sahai, A. (eds.) APPROX/RANDOM -2003. LNCS, vol. 2764, pp. 318–328. Springer, Heidelberg (2003). doi:10.1007/978-3-540-45198-3_27
Makkeh, A., Pourmoradnasseri, M., Theis, D.O.: On the graph of the pedigree polytope. arXiv:1611.08431 (2016)
Maksimenko, A.: The common face of some 0/1-polytopes with NP-complete non-adjacency relation. J. Math. Sci. 203(6), 823–832 (2014)
Naddef, D.: Pancyclic properties of the graph of some 0–1 polyhedra. J. Comb. Theor. Ser. B 37(1), 10–26 (1984)
Naddef, D.J., Pulleyblank, W.R.: The graphical relaxation: a new framework for the symmetric traveling salesman polytope. Math. Program. Ser. A 58(1), 53–88 (1993). http://dx.doi.org/10.1007/BF01581259
Naddef, D.J., Pulleyblank, W.R.: Hamiltonicity in (0–1)-polyhedra. J. Comb. Theor. Ser. B 37(1), 41–52 (1984)
Oswald, M., Reinelt, G., Theis, D.O.: On the graphical relaxation of the symmetric traveling salesman polytope. Math. Program. Ser. B 110(1), 175–193 (2007). http://dx.doi.org/10.1007/s10107-006-0060-x
Papadimitriou, C.H.: The adjacency relation on the traveling salesman polytope is NP-complete. Math. Program. 14(1), 312–324 (1978)
Pashkovich, K., Weltge, S.: Hidden vertices in extensions of polytopes. Oper. Res. Lett. 43(2), 161–164 (2015)
Santos, F.: A counterexample to the Hirsch conjecture. Ann. Math. 176(1), 383–412 (2012)
Sarangarajan, A.: A lower bound for adjacencies on the traveling salesman polytope. SIAM J. Discret. Math. 10(3), 431–435 (1997)
Schrijver, A.: Combinatorial Optimization. Polyhedra and Efficiency. Algorithms and Combinatorics, vol. 24. Springer, Berlin (2003)
Sierksma, G.: The skeleton of the symmetric traveling salesman polytope. Discret. Appl. Math. 43(1), 63–74 (1993)
Sierksma, G., Teunter, R.H.: Partial monotonizations of hamiltonian cycle polytopes: dimensions and diameters. Discret. Appl. Math. 105(1), 173–182 (2000)
Theis, D.O.: A note on the relationship between the graphical traveling salesman polyhedron, the symmetric traveling salesman polytope, and the metric cone. Discret. Appl. Math. 158(10), 1118–1120 (2010). http://dx.doi.org/10.1016/j.dam.2010.03.003
Theis, D.O.: On the facial structure of symmetric and graphical traveling salesman polyhedra. Discret. Optim. 12, 10–25 (2014). http://www.sciencedirect.com/science/article/pii/S1572528613000625
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Makkeh, A., Pourmoradnasseri, M., Theis, D.O. (2017). The Graph of the Pedigree Polytope is Asymptotically Almost Complete (Extended Abstract). In: Gaur, D., Narayanaswamy, N. (eds) Algorithms and Discrete Applied Mathematics. CALDAM 2017. Lecture Notes in Computer Science(), vol 10156. Springer, Cham. https://doi.org/10.1007/978-3-319-53007-9_26
Download citation
DOI: https://doi.org/10.1007/978-3-319-53007-9_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-53006-2
Online ISBN: 978-3-319-53007-9
eBook Packages: Computer ScienceComputer Science (R0)