Abstract
Min-based possibilistic influence diagrams offer a compact modeling of decision problems under uncertainty. Uncertainty and preferential relations are expressed on the same structure by using ordinal data. In many applications, it may be natural to represent expert knowledge and preferences separately and treat all nodes similarly. This work shows how an influence diagram can be equivalently represented by two possibilistic networks: the first one represents knowledge of an agent and the second one represents agent’s preferences. Thus, the decision evaluation process is based on more compact possibilistic network. Then, we show that the computation of sequential optimal decisions (strategy) comes down to compute a normalization degree of the junction tree associated with the graph representing the fusion of agents beliefs and its preferences resulting from the proposed decomposition process.
This is an extended and revised version of the conference paper: S. Benferhat, H.F. Khellaf-Haned, I. Zeddigha, “On the Decomposition of Min-Based PIDs”. The 8th conference of Agent and Artificial Intelligence ICAART-2016. Roma, February 2016.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ajroud, A., Omri, M., Youssef, H., Benferhat, S.: Loopy belief propagation in bayesian networks: origin and possibilistic perspectives. CoRR abs/1206.0976 (2012)
Amor, N.B., Benferhat, S., Mellouli, K.: Anytime propagation algorithm for min-based possibilistic graphs. Soft Comput. 8(2), 150–161 (2003)
Benferhat, S., Khellaf, F., Zeddigha, I.: A possibilistic graphical model for handling decision problems under uncertainty. In: The 8th Conference of the European Society for Fuzzy Logic and Technology, EUSFLAT, Milano, Italy, September 2013
Darwiche, A.: Modeling and Reasoning with Bayesian Networks, 1st edn. Cambridge University Press, New York (2009)
Dubois, D., Godo, L., Prade, H., Zapico, A.: On the possibilistic decision model: from decision under uncertainty to case-based decision. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 7(6), 631–670 (1999)
Dubois, D., Prade, H.: Possibility Theory: An Approach to Computerized Processing of Uncertainty. Plenum Press, New York (1988)
Dubois, D., Prade, H.: Possibility theory as a basis for qualitative decision theory. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence, vol. 2, pp. 1924–1930. Morgan Kaufmann Publishers Inc., San Francisco (1995)
Dubois, D., Prade, H., Sabbadin, R.: Decision-theoretic foundations of qualitative possibility theory. Eur. J. Oper. Res. 128(3), 459–478 (2001)
Titouna, F.: Fusion de réseaux causaux possibilistes. Ph.D. thesis, Université d’Artois (2009)
Garcia, L., Sabbadin, R.: Possibilistic influence diagrams. In: 17th European Conference on Artificial Intelligence (ECAI 2006), Riva del Garda, Italy, pp. 372–376. IOS Press, August 2006
Gebhardt, J., Kruse, R.: Background and perspectives of possibilistic graphical models. In: Gabbay, D.M., Kruse, R., Nonnengart, A., Ohlbach, H.J. (eds.) ECSQARU/FAPR -1997. LNCS, vol. 1244, pp. 108–121. Springer, Heidelberg (1997). doi:10.1007/BFb0035616
Giang, P., Shenoy, P.: Two axiomatic approaches to decision making using possibility theory. Eur. J. Oper. Res. 162(2), 450–467 (2005)
Guezguez, W., Amor, N.B., Mellouli, K.: Qualitative possibilistic influence diagrams based on qualitative possibilistic utilities. Eur. J. Oper. Res. 195(1), 223–238 (2009)
Sabbadin, R.: Une approche logique de la résolution de problèmes de décision sous incertitude basée sur les atms. In: Actes du 11ème Congrés Reconnaissance des Formes et Intelligence Artificielle (RFIA 1998), Clermont-Ferrand, pp. 391–400, 20–22 Janvier 1998
Sabbadin, R.: A possibilistic model for qualitative sequential decision problems under uncertainty in partially observable environments. In: The Fifteenth Conference on Uncertainty in Artificial Intelligence (UAI), pp. 567–574 (1999)
Tatman, J., Shachter, R.: Dynamic programming and influence diagrams. IEEE Trans. Syst. Man Cybern. 20(2), 365–379 (1990)
Zhang, N.: Probabilistic inference in influence diagrams. In: Computational Intelligence, pp. 514–522 (1998)
Acknowledgments
This work has received supports from the french Agence Nationale de la Recherche, ASPIQ project reference ANR-12-BS02-0003. This work has also received support from the european project H2020 Marie Sklodowska-Curie Actions (MSCA) research and Innovation Staff Exchange (RISE): AniAge (High Dimensional Heterogeneous Data based Animation Techniques for Southeast Asian Intangible Cultural Heritage Digital Content), project number 691215.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Benferhat, S., Boutouhami, K., Khellaf-Haned, H.F., Zeddigha, I. (2017). Qualitative Possibilistic Decisions: Decomposition and Sequential Decisions Making. In: van den Herik, J., Filipe, J. (eds) Agents and Artificial Intelligence. ICAART 2016. Lecture Notes in Computer Science(), vol 10162. Springer, Cham. https://doi.org/10.1007/978-3-319-53354-4_10
Download citation
DOI: https://doi.org/10.1007/978-3-319-53354-4_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-53353-7
Online ISBN: 978-3-319-53354-4
eBook Packages: Computer ScienceComputer Science (R0)