Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Qualitative Possibilistic Decisions: Decomposition and Sequential Decisions Making

  • Conference paper
  • First Online:
Agents and Artificial Intelligence (ICAART 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10162))

Included in the following conference series:

  • 819 Accesses

Abstract

Min-based possibilistic influence diagrams offer a compact modeling of decision problems under uncertainty. Uncertainty and preferential relations are expressed on the same structure by using ordinal data. In many applications, it may be natural to represent expert knowledge and preferences separately and treat all nodes similarly. This work shows how an influence diagram can be equivalently represented by two possibilistic networks: the first one represents knowledge of an agent and the second one represents agent’s preferences. Thus, the decision evaluation process is based on more compact possibilistic network. Then, we show that the computation of sequential optimal decisions (strategy) comes down to compute a normalization degree of the junction tree associated with the graph representing the fusion of agents beliefs and its preferences resulting from the proposed decomposition process.

This is an extended and revised version of the conference paper: S. Benferhat, H.F. Khellaf-Haned, I. Zeddigha, “On the Decomposition of Min-Based PIDs”. The 8th conference of Agent and Artificial Intelligence ICAART-2016. Roma, February 2016.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ajroud, A., Omri, M., Youssef, H., Benferhat, S.: Loopy belief propagation in bayesian networks: origin and possibilistic perspectives. CoRR abs/1206.0976 (2012)

    Google Scholar 

  2. Amor, N.B., Benferhat, S., Mellouli, K.: Anytime propagation algorithm for min-based possibilistic graphs. Soft Comput. 8(2), 150–161 (2003)

    Article  MATH  Google Scholar 

  3. Benferhat, S., Khellaf, F., Zeddigha, I.: A possibilistic graphical model for handling decision problems under uncertainty. In: The 8th Conference of the European Society for Fuzzy Logic and Technology, EUSFLAT, Milano, Italy, September 2013

    Google Scholar 

  4. Darwiche, A.: Modeling and Reasoning with Bayesian Networks, 1st edn. Cambridge University Press, New York (2009)

    Book  MATH  Google Scholar 

  5. Dubois, D., Godo, L., Prade, H., Zapico, A.: On the possibilistic decision model: from decision under uncertainty to case-based decision. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 7(6), 631–670 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dubois, D., Prade, H.: Possibility Theory: An Approach to Computerized Processing of Uncertainty. Plenum Press, New York (1988)

    Book  MATH  Google Scholar 

  7. Dubois, D., Prade, H.: Possibility theory as a basis for qualitative decision theory. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence, vol. 2, pp. 1924–1930. Morgan Kaufmann Publishers Inc., San Francisco (1995)

    Google Scholar 

  8. Dubois, D., Prade, H., Sabbadin, R.: Decision-theoretic foundations of qualitative possibility theory. Eur. J. Oper. Res. 128(3), 459–478 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Titouna, F.: Fusion de réseaux causaux possibilistes. Ph.D. thesis, Université d’Artois (2009)

    Google Scholar 

  10. Garcia, L., Sabbadin, R.: Possibilistic influence diagrams. In: 17th European Conference on Artificial Intelligence (ECAI 2006), Riva del Garda, Italy, pp. 372–376. IOS Press, August 2006

    Google Scholar 

  11. Gebhardt, J., Kruse, R.: Background and perspectives of possibilistic graphical models. In: Gabbay, D.M., Kruse, R., Nonnengart, A., Ohlbach, H.J. (eds.) ECSQARU/FAPR -1997. LNCS, vol. 1244, pp. 108–121. Springer, Heidelberg (1997). doi:10.1007/BFb0035616

    Chapter  Google Scholar 

  12. Giang, P., Shenoy, P.: Two axiomatic approaches to decision making using possibility theory. Eur. J. Oper. Res. 162(2), 450–467 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Guezguez, W., Amor, N.B., Mellouli, K.: Qualitative possibilistic influence diagrams based on qualitative possibilistic utilities. Eur. J. Oper. Res. 195(1), 223–238 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Sabbadin, R.: Une approche logique de la résolution de problèmes de décision sous incertitude basée sur les atms. In: Actes du 11ème Congrés Reconnaissance des Formes et Intelligence Artificielle (RFIA 1998), Clermont-Ferrand, pp. 391–400, 20–22 Janvier 1998

    Google Scholar 

  15. Sabbadin, R.: A possibilistic model for qualitative sequential decision problems under uncertainty in partially observable environments. In: The Fifteenth Conference on Uncertainty in Artificial Intelligence (UAI), pp. 567–574 (1999)

    Google Scholar 

  16. Tatman, J., Shachter, R.: Dynamic programming and influence diagrams. IEEE Trans. Syst. Man Cybern. 20(2), 365–379 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  17. Zhang, N.: Probabilistic inference in influence diagrams. In: Computational Intelligence, pp. 514–522 (1998)

    Google Scholar 

Download references

Acknowledgments

This work has received supports from the french Agence Nationale de la Recherche, ASPIQ project reference ANR-12-BS02-0003. This work has also received support from the european project H2020 Marie Sklodowska-Curie Actions (MSCA) research and Innovation Staff Exchange (RISE): AniAge (High Dimensional Heterogeneous Data based Animation Techniques for Southeast Asian Intangible Cultural Heritage Digital Content), project number 691215.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadja Faiza Khellaf-Haned .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Benferhat, S., Boutouhami, K., Khellaf-Haned, H.F., Zeddigha, I. (2017). Qualitative Possibilistic Decisions: Decomposition and Sequential Decisions Making. In: van den Herik, J., Filipe, J. (eds) Agents and Artificial Intelligence. ICAART 2016. Lecture Notes in Computer Science(), vol 10162. Springer, Cham. https://doi.org/10.1007/978-3-319-53354-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53354-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53353-7

  • Online ISBN: 978-3-319-53354-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics