Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Adaptive Blind Separation of Instantaneous Linear Mixtures of Independent Sources

  • Conference paper
  • First Online:
Latent Variable Analysis and Signal Separation (LVA/ICA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10169))

  • 2072 Accesses

Abstract

In many applications, there is a need to blindly separate independent sources from their linear instantaneous mixtures while the mixing matrix or source properties are slowly or abruptly changing in time. The easiest way to separate the data is to consider off-line estimation of the model parameters repeatedly in time shifting window. Another popular method is the stochastic natural gradient algorithm, which relies on non-Gaussianity of the separated signals and is adaptive by its nature. In this paper, we propose an adaptive version of two blind source separation algorithms which exploit non-stationarity of the original signals. The results indicate that the proposed algorithms slightly outperform the natural gradient in the trade-off between the algorithm’s ability to quickly adapt to changes in the mixing matrix and the variance of the estimate when the mixing is stationary.

This work was supported by California Community Foundation through Project No. DA-15-114599 and by the Czech Science Foundation through Project No. 17-00902S.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jutten, C., Herault, J.: Blind separation of sources, Part I: an adaptive algorithm based on neuromimetic architecture. Signal Process. 24, 1–10 (1991)

    Article  MATH  Google Scholar 

  2. Macchi, O., Moreau, E.: Self-adaptive source separation, Part I: convergence analysis of a direct linear network controled by the Herault-Jutten algorithm. IEEE Trans. Signal Process. 45, 918–926 (1997)

    Article  Google Scholar 

  3. Moreau, E., Macchi, O.: High order contrasts for self-adaptive source separation. Int. J. Adapt. Control Signal Process. 10, 19–46 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Amari, S.I., Cichocki, A., Yang, H.H.: A new learning algorithm for blind signal separation. Adv. Neural Inf. Process. Syst. 8, 752–763 (1996)

    Google Scholar 

  5. Makino, S., Lee, T.W., Sawada, H.: Blind Speech Separation. Springer, Dordrecht (2007)

    Book  Google Scholar 

  6. Tichavský, P., Yeredor, A.: Fast approximate joint diagonalization incorporating weight matrices. IEEE Trans. Signal Process. 57, 878–891 (2009)

    Article  MathSciNet  Google Scholar 

  7. Tichavský, P., Yeredor, A., Koldovský, Z.: A fast asymptotically efficient algorithm for blind separation of a linear mixture of block-wise stationary autoregressive processes. In: ICASSP 2009, Taipei, pp. 3133–3136 (2009)

    Google Scholar 

  8. Chabriel, G., Kleinsteuber, M., Moreau, E., Shen, H., Tichavský, P., Yeredor, A.: Joint matrices decompositions and blind source separation. IEEE Signal Process. Mag. 31, 34–43 (2014)

    Article  Google Scholar 

  9. Koldovský, Z., Tichavský, P., Oja, E.: Efficient variant of algorithm fastICA for independent component analysis attaining the Cramér-Rao lower bound. IEEE Trans. Neural Netw. 17, 1265–1277 (2006)

    Article  Google Scholar 

  10. Comon, P., Jutten, C.: Handbook of Blind Source Separation, Independent Component Analysis and Applications. Academic Press/Elsevier, Amsterdam (2010)

    Google Scholar 

  11. Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. Wiley-Interscience, New York (2001)

    Book  Google Scholar 

  12. Tichavský, P., Koldovský, Z.: Fast and accurate methods of independent component analysis: a survey. Kybernetika 47, 426–438 (2011)

    Google Scholar 

  13. Koldovský, Z., Tichavský, P.: A comparison of independent component and independent subspace analysis algorithms. In: Proceedings of the European Signal Processing Conference (EUSIPCO), Glasgow, pp. 1447–1451 (2009)

    Google Scholar 

  14. Cardoso, J.-F., Pham, D.T.: Separation of non stationary sources. Algorithms and performance. In: Roberts, S.J., Everson, R.M. (eds.) Independent Components Analysis: Principles and Practice, pp. 158–180. Cambridge University Press, Cambridge (2001)

    Chapter  Google Scholar 

  15. Tichavský, P., Koldovský, Z., Oja, E.: Performance analysis of the fastICA algorithm and Cramér-Rao bounds for linear independent component analysis. IEEE Trans. Signal Process. 54, 1189–1203 (2006)

    Article  Google Scholar 

  16. Doron, E., Yeredor, A., Tichavský, P.: Cramér-Rao-induced bound for blind separation of stationary parametric Gaussian sources. IEEE Signal Process. Lett. 14, 417–420 (2007)

    Article  Google Scholar 

  17. Tichavský, P., Koldovský, Z.: Weight adjusted tensor method for blind separation of underdetermined mixtures of nonstationary sources. IEEE Trans. Signal Process. 59, 1037–1047 (2011)

    Article  Google Scholar 

  18. Tichavský, P., Šembera, O., Koldovský, Z.: Blind separation of mixtures of piecewise AR(1) processes and model mismatch. In: Vincent, E., Yeredor, A., Koldovský, Z., Tichavský, P. (eds.) LVA/ICA 2015. LNCS, vol. 9237, pp. 304–311. Springer, Heidelberg (2015). doi:10.1007/978-3-319-22482-4_35

    Google Scholar 

  19. Málek, J., Koldovský, Z., Tichavský, P.: Adaptive time-domain blind separation of speech signals. In: Vigneron, V., Zarzoso, V., Moreau, E., Gribonval, R., Vincent, E. (eds.) LVA/ICA 2010. LNCS, vol. 6365, pp. 9–16. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15995-4_2

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ondřej Šembera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Šembera, O., Tichavský, P., Koldovský, Z. (2017). Adaptive Blind Separation of Instantaneous Linear Mixtures of Independent Sources. In: Tichavský, P., Babaie-Zadeh, M., Michel, O., Thirion-Moreau, N. (eds) Latent Variable Analysis and Signal Separation. LVA/ICA 2017. Lecture Notes in Computer Science(), vol 10169. Springer, Cham. https://doi.org/10.1007/978-3-319-53547-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53547-0_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53546-3

  • Online ISBN: 978-3-319-53547-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics